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Extracting Temporal Features Robust to 
Headwear Variation from Video Sequences of 
Body Sway for Person Identification 
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Introduction

Person identification
⚫ Determines whether the same people appear in video sequences.
⚫ Body sway has attracted attention as a cue for person identification. 
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We focus on identifying people with 
headwear in video sequences of body sway.
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Without headwear

Existing methods for person identification using body sway
⚫ Extract spatiotemporal features from overhead camera.
⚫ require that people do not wear headwear.
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head

People with headwear
⚫ Factory workers may wear caps or helmets.
⚫ Costume participants may wear wigs.



When people wear headwear
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People’s Head shapes change with the type of headwear worn.

Video Video Video Video Video

Person identification accuracy decreases when using existing 
spatiotemporal features for people wearing different headwear.

Head shapes and head movements
represented by existing methods

Problems with existing methods
⚫ The spatiotemporal features capture personal identity through 

spatial shape and temporal movement representations.
⚫ Because both representations rely on the head shape,

the spatiotemporal features vary with changes in head shape.



Purpose
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Procedure of feature extraction of our method 
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We propose a method to extract temporal features robust to headwear variation 
in person identification using body sway, without relying on head shape.
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Our temporal features provide higher person identification accuracy than 
existing spatiotemporal features in the presence of headwear variation.
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Design of temporal features
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Calculation of 
center positions

Measurement of 
time-series signals

Frequency analysis
(Power Spectral Densities)

Acquisition of 
a video sequence

Concatenation of 
PSDs

We refer to this feature extraction as the improved existing method.
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We consider extracting temporal features that focus only 
on the head movement ignoring the head shape.

We improve the temporal feature extraction of existing methods.



Experiment with the improved existing method
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No 
headwear

Cap Helmet Long
hair

Afro

Method n=1 n=5 n=10 n=15

Existing methods
(spatiotemporal)

3.7 14.2 26.4 36.2

Improved existing method
(temporal)

5.2 18.8 43.3 59.7

Comparison of the accuracy (%) from 50 participants

observation setup
2
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 m

Participant

Overhead
camera

Examples in the original dataset

The improved existing method slightly 
enhances the existing methods.

We evaluated person identification accuracy with headwear variation.
⚫ Headwear combinations in query and gallery:

5𝑃2 = 20 permutations
⚫ Classifier: Nearest neighbor algorithm
⚫ Evaluation metric: n-th matching rate (%)

We created an original that includes headwear variation.
⚫ Headwear: 5 types
⚫ Participants: 50
⚫ Observations: 2 per headwear
⚫ Duration: 120 sec 

per observation
⚫ Posture: Upright



Influence of headwear variation on temporal features
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⚫ When uninformative components exist.

We believe these uninformative components 
may cause incorrect identification.

The distance between the temporal features may be large.

Person 1 Person 1

Query Gallery

The distance between the temporal features may be small.
Person 1 Person 2

Query Gallery

⚫ How to investigate uninformative 
components in temporal features.

➢ When P1=P2, the within-person distance.
➢ When P1≠P2, the between-person distance. 
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➢ We calculated the within-person and between-person 
distances from the temporal features.

We believe frequency bands where these distances 
are similar contain uninformative components.

We assume the improved method didn't enhance accuracy because temporal 
features contain uninformative components due to headwear variation.

Within-person

Between-person



Comparison of within-person and between-person distances
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⚫ The difference is small in the 
frequency range above 𝐹-Hz
(High-frequency band).

⚫ The difference is large in the 
frequency range below 𝐹-Hz
(Low-frequency band).

⚫ The boundary of the trend 
change is around 𝐹-Hz. 

We compare the within-person and the between-person distance 
in the temporal features of the improved existing method.

High-frequency components are uninformative and should be removed, 
while low-frequency ones are informative and should be retained.



Comparison of within-person and between-person distances
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⚫ The difference is small in the 
frequency range above 𝐹-Hz
(High-frequency band).

⚫ The difference is large in the 
frequency range below 𝐹-Hz
(Low-frequency band).

⚫ The boundary of the trend 
change is around 𝐹-Hz. 

We compare the within-person and the between-person distance 
in the temporal features of the improved existing method.

High-frequency components are uninformative and should be removed, 
while low-frequency ones are informative and should be retained.
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Comparison of within-person and between-person distances
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while low-frequency ones are informative and should be retained.
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Comparison of within-person and between-person distances
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in the temporal features of the improved existing method.

High-frequency components are uninformative and should be removed, 
while low-frequency ones are informative and should be retained.
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Design of a learning-based low-pass filter (1/2)

When designing the learning-based low-pass filter

⚫We need to select a suitable threshold for the low-frequency band.
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Separation metric =

Variance of between-person distances

Variance of within-person distances
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We propose a learning-based low-pass filter to extract only 
the informative low-frequency components for person identification.

⚫We use a separation metric for selecting thresholds.

⚫We select the thresholds that maximize the values of the separation metric.

⚫ The thresholds are determined separately for the left-right and front-back directions.



Design of a learning-based low-pass filter (2/2)
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To obtain robust thresholds, 
we prepare a training dataset.

Training dataset for calculating 
the separation metric

Left-right Front-back

⨀ Application of a learning-
based low-pass filter
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ThresholdWe refer to this feature extraction 
procedure as the proposed method.

Calculation of 
center positions

Measurement of 
time-series signals

Frequency analysis
(Power Spectral Densities)

The procedure of feature extraction
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Experiment with the proposed method
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Method n=1 n=5 n=10 n=15

Proposed method
(with low-pass filter)

44.2 78.6 89.2 94.2

Improved existing method
(without filtering)

6.3 21.9 38.1 51.0

Comparison of the accuracy (%) from 40 participants

We created training set and evaluation set from the 50 participants.
⚫ Training set for selecting threshold: 10 randomly selected participants
⚫ Evaluation set for person identification: the remaining 40 participants

We searched for the optimal low-pass filter threshold in 0.05-Hz increments.

Experimental results suggest the proposed method enhances 
person identification accuracy with headwear variation.



Conclusions
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In future work
We plan to identify people wearing other types of headwear.

Our contributions
⚫We clarify informative and uninformative 

components in temporal features.

⚫We present a learning-based low-pass filter that removes 
uninformative components for robust temporal feature extraction.

⚫ Using a dataset of people with different headwear, we demonstrate 
enhanced person identification accuracy with headwear variation.

Method n=1 n=5 n=10 n=15

Proposed method 44.2 78.6 89.2 94.2

Existing methods 3.7 14.2 26.4 36.2

We proposed a method to extract temporal features robust to headwear 
variation for person identification using body sway from an overhead camera.
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