
Using 3D heatmaps to visualize the gaze distributions of observers
watching a moving subject

Fuyuko Iwasaki, Shouta Hioki, Shunsuke Yoneda, Michiko Inoue and Masashi Nishiyama1

Abstract— We propose a method to visualize the measured
gaze distribution of observers asked to perceive the dynamism
of a subject’s movements in a sports video. This visualization
method uses a three-dimensional heatmap on the surface of a
human body model. An existing method generates the heatmap
using gaze measurements on a body surface in a still image.
However, this method does not handle changes over time in
a subject’s posture in a video. Furthermore, this method does
not visualize gaze in the region surrounding the subject’s body.
Our method calculates the angle between the gaze direction and
vertex position to visualize the gaze distribution on the body sur-
face and surrounding regions. Experimental results confirmed
that our method visualizes not only the gaze distribution on the
surface region but also that in the surrounding region. We also
confirmed that it is possible to visualize the gaze distribution
over a subject’s movements in a video without depending on
changes in posture using a standard human body model.

I. INTRODUCTION

In recent years, sports video content on a virtual large
display, for example, a head-mounted display (HMD), has
been eagerly anticipated. We consider a situation in which
an audience watches a video of an athlete performing sports
actions using an HMD. Figure 1 shows an example of such
a situation. When the audience is affected by the dynamism
in an athlete’s movement, their gaze is focused on the part of
the athlete’s body that provides the cue for this dynamism.
To determine which body part is the focus of gaze in various
sports videos, an analyst can measure the gaze distribution
of the audience. In the following, we refer to the athlete in
the video as the subject and the audience who watches the
athlete’s movements in the video as the observer.

When an analyst is studying gaze distribution, there is
a need to visualize in an easy-to-understand manner which
body part of a subject an observer’s gaze is focused on. A
two-dimensional (2D) heatmap superimposed on a still image
is commonly used to visualize the gaze distribution. For
example, a 2D heatmap has been used in existing analytical
studies [1], [2], [3] to investigate the gaze distribution when a
subject in a still image is used as the stimulus. However, the
posture of a subject performing a sports action continuously
changes when a subject in a video is used as the stimulus.
Specifically, to study gaze distribution using a conventional
2D heatmap, differences in the subject’s posture at different
temporal points in the video must be taken into account.

Hence, a visualization method is needed so that analysts
can instantly understand the gaze distribution without taking
into account differences in posture, even when the subject’s
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Fig. 1. When watching a sports video on an HMD, an observer is affected
by the dynamism in the subject’s movement. The analyst investigates where
the observer’s gaze is focused on the subject’s body.

posture changes over time. Here, we consider a visualization
method proposed by Inoue et al. [4]. In this method, a stan-
dard human body model representing a three-dimensional
(3D) human shape with a typical posture is estimated from
the subject in a still image, and the gaze distribution on the
surface of the body model is visualized using a 3D heatmap.
This method enables the gaze distribution in still images
to be evaluated without the need to consider differences
in subject posture. However, the existing method considers
only subjects in still images, not subjects in videos, who
continuously change their posture. In addition, there are
significant challenges with the existing method, which does
not visualize the gaze measured in the surrounding regions
because it visualizes only the gaze measured in the subject’s
surface region. The “surface region” here refers to a set of
pixels corresponding to the subject, as estimated in the video,
and the “surrounding region” refers to the set of pixels in
the vicinity of the subject. Figure 2 shows examples of these
regions.

In this paper, we propose a method to visualize the gaze
distribution measured in a subject’s surface and surrounding
regions using a 3D heatmap in which the subject’s posture
is standardized over time. In the experiments, we asked
observers to assess the dynamism of a subject’s movements
in a sports video. We measured and then visualized the gaze
distribution of the observers while they watched the video.
Experimental results show that, in contrast to the existing
method, which only visualizes the measured gaze distribution
on the surface region, our method visualizes this distribution
in both the surface and surrounding regions as a 3D heatmap.
Furthermore, we confirmed that our method can visualize the
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Fig. 2. Surface and surrounding regions of a subject’s body.

measured gaze distribution throughout the entire duration of
the video, in contrast to the existing method, which cannot
cope with changes in the subject’s posture over time.

II. VISUALIZING MEASURED GAZE DISTRIBUTION IN THE
SURFACE AND SURROUNDING REGIONS

A. Overview of the existing method

The existing method [4], as described in Section I, has
two limitations: it cannot handle a sports video, and it does
not visualize the measured gaze distribution in the region
surrounding the human body. We first resolve the latter
limitation, which arises at each time point, i.e., at each video
frame, and then address the former limitation in the temporal
direction.

To clarify the limitation, we present an overview of the
existing method [4], which consists of the following two
steps. In step 1, the eye tracker measures the gaze direction
vector g(t, o) of the observer o looking at a still image at
time t. Here, g(t, o) is a unit vector whose starting point
is the center between the observer’s eyes. In step 2, the
level of attention is calculated. This indicates how much
the gaze is focused on each vertex v(t) of the human body
model estimated from the still image using the gaze direction
vector αg(t, o) multiplied by constant α(> 0). Note that
SMPL [5] is used as the human body model, which is rep-
resented by posture and body shape parameters. The human
body model consists of a set V(t) of 3D vertex position
vectors v(t) on the body surface and the adjacency relations
among the vertices. Vector αg(t, o) is determined by the
intersection with the surface of the human body model. The
existing method computes the attention d(v(t), g(t, o)) based
on the distance ϵ as

d(v(t), g(t, o)) = exp(− ϵ2

2σ2
), (1)

where ϵ = ∥v(t)− αg(t, o)∥2. Smaller values of distance ϵ,
indicate higher attention with respect to v(t), and the larger
the distance, the smaller the amount of attention degree. The
existing method [4] is based on distance because the visu-
alization of gaze distribution in a conventional 2D heatmap
is based on the distance from the position of the measured
gaze on the image plane.

B. How the existing method handles the gaze direction

This section discusses why the existing method [4] cannot
handle the gaze distribution measured in the surrounding
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Fig. 3. Examples of calculating the level of attention in the surface and
surrounding regions using the existing method and our method.

region. In the existing method, the gaze direction vec-
tor αg(t, o) is calculated under the strong constraint that it
must intersect with the surface of the human body model
estimated from the still image. Figure 3(a) shows a case that
satisfies this constraint. When intersection with the human
body model occurs, the attention d(g(t, o),v(t)) can be
computed because the distance ϵ in Eq. (1) between gaze
direction vector αg(t, o) and the vertex position vector v(t)
of the human body model can be calculated. By contrast,
Figure 3(b) shows a case that does not satisfy this constraint.
When there is no intersection with the human body model,
the attention d(g(t, o),v(t)) cannot be computed because
distance ϵ cannot be defined. Hence, when gaze is measured
in the surrounding region, the existing method’s 3D heatmap
does not adequately visualize the gaze distribution.

We consider two possible situations that occur when the
observer’s gaze direction vector αg(t, o) passes through the
surrounding region. The first situation occurs when the ob-
server looks at a region in the background near the subject’s
contour. The second situation occurs when the observer
views an edge region, such as the subject’s hair or clothing,
that is not represented by the SMPL human body model.
When these situations occur, the observer simultaneously
views the human body in the nearby surface region and
its surrounding regions. Specifically, the observer is not
just looking in the gaze direction g(t, o) but also at the
vertex v(t) of the human body model that exists in the
vicinity of g(t, o). Therefore, when visualizing the gaze
distribution using a 3D heatmap, it is necessary to consider
both the surface and surrounding regions simultaneously.

C. Attention to the surface and surrounding regions in our
method

Instead of using distance ϵ, our method uses the angle θ
between the gaze direction vector g(t, o) and vertex position
vector v(t) to calculate the level of attention a(v(t), g(t, o)),



which indicates how often the gaze is focused on the sub-
ject’s body. Figure 3(c) shows a case where the measured
gaze distribution falls within a surface region. We can
calculate a(g(t, o),v(t)) since the angle θ between gaze
direction vector g(t, o) and vertex position vector v(t) has
been obtained. Furthermore, Figure 3(d) shows a case where
the measured gaze distribution falls within the surrounding
region. We can also calculate a(g(t, o),v(t)) in this case
because angle θ has been defined. Thus, our angle-based
method can simultaneously handle surface and surrounding
regions when visualizing the gaze distribution using a 3D
heatmap.

D. Calculating the level of attention at each time point

Our method calculates the attention a(v(t), g(t, o)) of
observer o at time t using the angle θ between gaze direction
vector g(t, o) and vertex position vector v(t) as follows:

a(v(t), g(t, o)) = exp(− θ2

2σ2
). (2)

Angle θ is represented using the inner product as

cos θ =
(v(t), g(t, o))

∥v(t)∥2∥g(t, o)∥2
. (3)

The smaller the angle θ, the greater the attention with respect
to v(t); the larger the angle θ, the smaller the attention. The
level of attention is set to 0 for v(t) on the other side of the
human body model, which cannot be seen directly from the
observer’s viewpoint.

Our method calculates the vertex attention probabil-
ity p(v(t)|S(t)), which represents how much the gaze tends
to be focused on vertex v(t) of the human body model
when viewing a frame S(t) at time t in a video. The vertex
attention probability p(v(t)|S(t)) is defined using the level
of attention a(v(t), g(t, o)) as follows:

p(v(t)|S(t)) = 1

W

∑
o∈O

a(v(t), g(t, o)), (4)

where O is a set of observers consisting of O individuals.
Coefficient W is expressed as

W =
∑

v(t)∈V(t)

∑
o∈O

a(v(t), g(t, o)). (5)

Moreover, p(v(t)|S(t)) satisfies the following equation:∑
v(t)∈V(t)

p(v(t)|S(t)) = 1. (6)

E. Marginalization of vertex attention probability over the
duration of the video

We discuss the remaining limitation of the existing
method [4], which is that it is not suitable for sports videos.
The subject’s posture changes continuously over time in
such videos, as described in Section I. The analyst needs
to instantly grasp where on the subject’s body the observers
were looking throughout the entire duration of the video. Our
method standardizes the different postures over time using
a standard human body model with a common posture at

time t, and the vertex attention probabilities are marginalized
over the duration of the video. This marginalization allows
the analyst to investigate the gaze distribution throughout the
entire duration of the video by instantly viewing a single 3D
heatmap visualized on a standard human body model.

The following describes the details of this marginaliza-
tion. The human body model estimated from frame S(t) at
time t consists of a set V(t) of vertices v(t). The standard
human body model consists of a set Ṽ of vertices ṽ under
the condition that the posture is constant over time. The
adjacencies of v(t) on the human body surface are equal
to those of ṽ on the standard human body model, although
the 3D position vectors are different. Therefore, the vertex
attention probability p(v(t)|S(t)) in Eq. (4) at time t can be
converted to the vertex attention probability p(ṽ|S(t)) of the
standard human body model as

p(ṽ|S(t)) = p(v(t)|S(t)). (7)

Our method uses 4D Humans [6] to estimate the SMPL pose
parameters of the human body model at time t. The SMPL
posture parameters are set to constant values to generate a
standard human body model. The standard posture is upright,
with both arms extended horizontally to the sides. The set of
time points for the frames of the video is denoted by T =
{t1, · · · , tT } and the set of frames in the video is denoted
by S = {S(t1), · · · ,S(tT )}. The number of elements in T
is equal to the number of elements in S .

To generate the gaze distribution over the entire duration
of the video, the vertex attention probability p(ṽ|S(t)) of
Eq. (7) is marginalized using the set of frames S. Specifi-
cally, the marginalized vertex attention probability p(ṽ|S) is
calculated as

p(ṽ|S) = 1

n(S)
∑

S(t)∈S

p(ṽ|S(t)), (8)

where function n( ) returns the number of elements in the
set. In addition, p(ṽ|S) satisfies the following equation:∑

ṽ∈Ṽ

p(ṽ|S) = 1. (9)

Finally, our method visualizes where the observers are
looking at the subject’s body throughout the entire duration
of the video so that the analyst can understand it instantly.
Specifically, the vertex attention probability p(ṽ|S), which is
marginalized over the duration of the video, is represented in
a 3D heatmap and superimposed on the standard human body
model. We color the surface of the standard human model
such that the vertices with a higher probability of focused
gaze are closer to red, and those with a lower probability of
focused gaze are closer to blue.

F. Overall method

Figure 4 presents an overview of our overall method. Our
method acquires the observer’s gaze direction vector g(t, o)
at time t in step S1 and the vertex position vector v(t)
of the human body model in step S2. Next, in step S3
(Section II-D), our method calculates the observer’s level



𝛼𝒈 𝑡, 𝑜

𝒈 𝑡, 𝑜

𝒗(𝑡)

Angle 𝜃

S1
Gaze measurement

A frame at time 𝑡

S2
Body model estimation

S3
Attention calculation

Gaze direction vector	
𝒈 𝑡, 𝑜 Frame 𝑆(𝑡)

Eye of
observer 𝑜

A set of the vertexes 
composing human 
body model

Vertex position vector
	𝒗(𝑡) ∈ 𝒱(𝑡)

𝑎(𝒈 𝑡, 𝑜 , 𝒗(𝑡))
Attention

𝑝(𝒗(𝑡)|𝑆(𝑡))
Vertex attention probability at 𝑡

Observers

S5
Marginalization 

𝑝(𝒗1|𝑆(𝑡!))

𝑝(𝒗1|𝑆)

Frame
𝑆(𝑡)

Frame
𝑆(𝑡!)

Frame
𝑆(𝑡")

Vertex attention 
probability at 𝑡!

𝑝(𝒗1|𝑆(𝑡))

𝑝(𝒗1|𝑆(𝑡"))
S4

Visualization at time 𝑡

Marginalizing using a set of the frames
𝑆 = 𝑆 𝑡! , … , 𝑆(𝑡") in the video

All frames of the video

High Low

Vertex attention 
probability at 𝑡

Vertex attention 
probability at 𝑡"

A 3D heatmap 
representing 𝑝(𝒗(𝑡)|𝑆(𝑡))
is superimposed 
on the human body model at 𝑡.

Gaze attention

A 3D heatmap representing 𝑝(𝒗1|𝑆) is 
superimposed on the standard human body model.

S6
Visualization over all frames

𝑝(𝒗(𝑡!)|𝑆(𝑡!))

𝑝(𝒗(𝑡)|𝑆(𝑡))

𝑝(𝒗(𝑡")|𝑆(𝑡"))

・・・
・・・

・・・
・・・

Convert

Convert

Convert

Fig. 4. Overview of our method for visualizing the gaze distribution using a 3D heatmap on the standard human body model.

of attention a(g(t, o),v(t)) based on the angle between
those vectors, and we obtain the vertex attention probabil-
ity p(v(t)|S(t)) from the level of attention. Our method
visualizes the probability at time t in step S4. Finally, it
marginalizes the probability over the duration of the video
in step S5 (Section II-E) and visualizes the marginalized
probability p(ṽ|S) using a 3D heatmap on a standard human
body model in step S6.

III. EXPERIMENTAL RESULTS

A. Setup

Twenty-four observers (12 male, 12 female, mean age
23.6 ± 2.0 years) participated in the gaze measurement
experiments. We used an HMD (VIVE Pro Eye, HTC) with a
built-in eye tracker. We showed the observers three stimulus
sports videos on a large virtual display and measured their
gaze while watching those videos. We prepared stimulus
sports videos with three subjects: Subject 1 climbed a wall,
Subject 2 hit a ball with a tennis racket, and Subject 3
performed martial arts kicks. The durations of the stimulus
videos were 10.4 s for Subject 1, 6.9 s for Subject 2, and
7.3 s for Subject 3. During the gaze measurement, we asked
observers whether they were affected by the dynamism in
the subject’s movements in the stimulus sports videos.

B. Visualization of the gaze distribution measured from the
surface and surrounding regions at each time point

We evaluated whether our method can handle the sur-
rounding regions in addition to the surface regions when
visualizing gaze distributions. The frames in Figures 5(a),
(f), and (k) present the target of the visualization. The exist-
ing method [4] used the level of attention d(v(t), g(t, o))
based on the distance ϵ in Eq. (1), as described in Sec-
tion II-A. By contrast, our method used the level of atten-
tion a(g(t, o),v(t)) based on the angle θ in Eq. (2) described
in SectionII-D.

First, Figures 5(b), (g), and (l) show the results of the
visualization using the existing method [4] based on dis-
tance. For comparison, Figures 5(c), (h), and (m) show the
visualization results using our method based on angle for the
surface region only. The appearance of the visualized gaze
distribution is almost identical in Figures 5(b) and (c). The
appearances are also almost identical in Figures 5(g) and (h)
as well as in Figures 5(l) and (m). Both methods are equally
expressive when visualizing gaze distributions measured on
the surface regions.

Next, Figures 5(d), (i), and (n) show the results of visual-
ization using our method in the surrounding regions, which
are not considered in the existing method. For Subject 1,
the observers’ gaze were mainly focused on the left elbow
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Fig. 5. Visualization of the gaze distribution measured on the surface
region and in the surrounding region at each time point.

in the surrounding region (Figure 5(d)), whereas their gaze
was mainly focused on the head and right arm in the surface
region (Figure 5(c)). For Subject 2, their gaze was mainly
focused on the head in the surrounding region (Figure 5(i)),
whereas their gaze was mainly focused on the right arm in
the surface region (Figure 5(h)). For Subject 3, their gaze
was mainly focused on the head in the surrounding region
(Figure 5(n)), whereas their gaze was mainly focused on the
left shoulder in the surface region (Figure 5(m)). Based on
these results, we believe that the gaze distribution measured
in the surrounding region can detect trends overlooked when
the gaze distribution is measured in the surface region alone.
In the figure, the numbers at the top of the visualization
results represent the percentage of gaze samples acquired in
the surface region or surrounding region, respectively, when
the total number of gaze samples for all 24 observers was
set to 100%.

Finally, Figures 5(e), (j), and (o) show the results of the
visualization using our method for the gaze distributions
measured in both the surface and surrounding regions. These
results qualitatively confirm that our method can visualize
the gaze distribution measured from the surrounding region,
which the existing method does not, in addition to the
surface region at each time point. If the observer’s gaze often
deviates from the surface region, our method, which can

simultaneously handle the surrounding region, is important
for investigating gaze distributions.

C. Visualization of gaze distribution with marginalized ver-
tex attention probability over the entire duration of the video

We evaluated whether our method can handle measured
gaze distribution for sports videos by marginalizing the
vertex attention probability over the entire duration of the
video. Figures 6(a), (e), and (i) show some frames S(t)
selected from the stimulus sports videos.

Figures 6(b), (f), and (j) show the results of visualizing
the gaze distribution at time t using a 2D heatmap, which
is a conventional visualization technique. Furthermore, Fig-
ures 6(c), (g), and (k) show the results of visualizing the
vertex attention probability at time t using the 3D heatmap
generated in step S4 of Figure 4, as described in Section II-F.
Both the 2D and 3D heatmaps visualize where the observers
were looking at the subject’s body at each time point.
However, when an analyst would like to understand where
on the subject’s body the observers were looking throughout
the entire duration of the video, heatmaps for each time point
require a detailed memorization of the body parts the gazes
were focused on at each video frame.

Next, Figures 6(d), (h), and (l) show the results of vi-
sualizing the vertex attention probability on the standard
human model using the 3D heatmap generated in step S6
of Figure 4, as described in Section II-F. In the figure,
three viewpoints of the virtual camera were set and rendered
when visualizing the heatmap of the standard human body
model to check the 3D heatmap from multiple viewpoints
simultaneously. The visualization of the 3D heatmap using
our method normalizes the posture, allowing the analyst to
understand at a glance where the observers were looking at
the subject’s body throughout the entire video.

We discuss the gaze distributions that were measured when
observers were affected by the dynamism of the subject’s
movements throughout the entire duration of the video.
For Subject 1, who was climbing a wall, the observers’
gaze mainly focused on the head, arms, and right side
(Figure 6(d)). For Subject 2, who was hitting a ball with
a racket, the observers’ gaze mainly focused on the head
throughout (Figure 6(h)). For Subject 3, who was performing
martial arts kicks, the observers’ gaze mainly focused on the
head (Figure 6(l)). These results reveal that the observers’
gaze tended to focus on the head, even though the subjects’
movements were different in the sports videos. We quali-
tatively confirmed that our method overcomes time-series
changes in the subject’s posture in a video by visualizing
the vertex attention probability on the standard human body
model.

IV. CONCLUSIONS

We proposed a method to visualize the gaze distribution
of observers asked to assess whether they were affected by
the dynamism of a subject’s movement in a sports video. In
this method, the gaze distribution measured on the subject’s
surface and in the surrounding regions is visualized using a
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Fig. 6. Visualization of gaze distribution by marginalized vertex attention probability over the entire duration of the video.

3D heatmap in which the subject’s posture is standardized
over time. In future work, we intend to develop a visual-
ization method for videos with multiple subjects. We also
plan to expand our quantitative evaluations through user
studies to evaluate the effectiveness of our method. This
work was partially supported by JSPS KAKENHI Grant No.
JP23K11145.
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