
Reducing Computational Cost in Pedestrian
Conversation Activity Recognition through

Skeleton Spatiotemporal Graphs
Tsubasa Kondo∗, Michiko Inoue∗, Shunsuke Yoneda† and Masashi Nishiyama∗

∗Graduate School of Sustainability Science, Tottori University, Japan
†Organization for Information Strategy and Management, Tottori University, Japan

Abstract—The existing method for recognizing conversation ac-
tivity in walking pedestrian groups uses heavy three-dimensional
mesh reconstruction and rendering, which significantly increases
the computational cost. We investigate a lightweight framework
that replaces skinned multi-person linear model mesh structures
using skeleton spatiotemporal graphs extracted from general
color video sequences to recognize the conversation activity
labels. Compared with the existing method, our approach reduces
inference time and graphics processing unit memory while main-
taining equal or higher accuracy, which makes low computational
cost conversation activity recognition feasible.

Index Terms—Recognition, Conversation activity, Computa-
tional cost, Skeleton, Spatiotemporal graphs

I. INTRODUCTION

A growing demand exists for a technique that automatically
recognizes conversation activity inside pedestrian groups walk-
ing outdoors. Such a technique acquires color video sequences
using a general camera from a standoff distance and extracts
visual features that reflect the group’s conversation activity.
To the best of our knowledge, only one existing method [1]
has addressed conversation activity recognition for walking
groups using video sequences. This method uses a succession
of whole-body movements, termed body interaction, as the
visual features based on McNeill’s [2] finding that gestures
are bodily movements that accompany speech and are helpful
for the analysis of conversation. The existing method extracts
the body gestures of pedestrians using a three-dimensional
(3D) human body model and inputs the resulting interaction
video sequence as the visual features. In addition to its high
accuracy, this design enables developers to visually confirm
which body parts in the 3D model contribute to conversation
activity recognition.

However, the existing method [1] was not designed for sce-
narios with a limited computation time and graphics process-
ing unit (GPU) memory usage. We identify two dominant bot-
tlenecks in the processing procedures of the existing method.
First, to produce a 3D human model for every pedestrian in
the video sequence, the method estimates the skinned multi-
person linear model (SMPL) pose-and-shape parameters [3]
and converts them into a mesh structure. Although low-
dimensional SMPL parameters can be inferred stably and
accurately, the computation required is high. Second, when
the visual features are built, the existing method renders each
mesh structure onto image planes to form an interaction video

sequence; the rendering cost increases as the video-sequence
length increases, and thus demands extra computation and
GPU memory.

To overcome such resource-limited settings, we investigate
a technique, referred to hereafter as our method, that replaces
the SMPL mesh pipeline with a much lighter skeleton repre-
sentation. Specifically, we encode the pedestrian group’s body
gesture interaction as a skeleton spatiotemporal graph built
from body-joint keypoints and evaluate its effectiveness for
conversation activity recognition. We verify the following two
points:

• I1: In the body movement parameter inference stage, our
method lowers computation time and GPU memory usage
compared with the existing method [1].

• I2: In the feature extraction stage, our method lowers
computation time and GPU memory usage compared with
the existing method [1].

We also confirm that our method achieves recognition accuracy
on a par with, or superior to, the existing method.

II. OUR METHOD

A. Overview

We design a new approach to achieve points I1 and I2 de-
scribed in Section I while preserving the recognition accuracy
of the existing method [1]. Specifically, we design a method
that represents the body interaction effective for conversation
activity recognition as a skeleton spatiotemporal graph and
uses this representation as the visual feature.

Figure 1 shows an overview of our method. We use a skele-
ton spatiotemporal graph as the feature for conversation activ-
ity recognition. The processing procedure is as follows: First,
Procedure P1 detects the bounding box of each pedestrian in
the group using YOLOX-X [4]. Next, Procedure P2 extracts
the skeleton of each pedestrian using ViTpose [5] at each time
point and Procedure P3 connects these skeletons along the
temporal direction to generate a spatiotemporal graph. Finally,
Procedure P4 introduces the resulting spatiotemporal graph to
predict conversation activity using ST-GCN [6].

B. Skeleton spatiotemporal graph

We aim to achieve points I1 and I2 described in Section I
using a skeleton spatiotemporal graph. Specifically, at each
time point, we represent the skeleton as the image-plane
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Fig. 1. Overview of our method

positions of keypoints, such as the center of mass of the head
and the body joints, together with connectivity among these
keypoints. The body can be represented by the skeleton at
each time point without the computationally intensive, high-
precision estimation of SMPL pose-and-shape parameters, and
therefore we expect to reduce the computation time required
to estimate the bodies of pedestrians in a video sequence.

Our method suppresses the large amount of GPU memory
usage that would otherwise be required to process the body-
interaction video sequence rendered from the SMPL model by
linking skeletons along the temporal axis to form a skeleton
spatiotemporal graph. Specifically, within the same frame of
the video sequence, we connect the keypoints of each skeleton
in the spatial domain, and between temporally adjacent frames,
we connect the corresponding keypoints in the temporal do-
main, thereby constructing the graph. The skeleton spatiotem-
poral graph expresses body interaction without performing 3D
rendering, and thus this graph reduces both computation time
and GPU memory usage.

C. Pipeline of our method

1) P1: Pedestrian detection: We detect a bounding box that
contains the entire body region of each pedestrian from the
camera video sequence. As the detector, we use YOLOX-
X [4], which estimates whole-body bounding boxes. For
a pedestrian p, we define the resulting video sequence of
estimated detected bounding boxes as

R(p) = {R(t, p) | t ∈ T }, (1)

where R(t, p) is the region image of pedestrian p at time point
t and T is the set of time points at which the region images
were acquired. The total number of elements in T is denoted
by T . This T also corresponds to the duration during which
pedestrian p remains in view, from the moment the person
appears until the individual leaves the frame in the video se-
quence. Our method performs pedestrian tracking concurrently
with detection to associate the same individual across frames.
We adopt ByteTrack [7] as the tracking algorithm.

2) P2: Skeleton estimation: We estimate the skeleton of
pedestrian p from the bounding-box video sequence R(p). We
adopt ViTpose [5] as the skeleton-estimation method. For the
region image R(t, p) ∈ R(p) at time point t, we estimate
the image-plane locations of the pedestrian’s keypoints. The
skeleton is represented by a spatial graph S(t, p) that contains
these keypoint positions. This spatial graph connects the

keypoints of the skeleton in the spatial domain within the same
time point of the video sequence.

3) P3: Spatiotemporal graph construction: We generate a
spatiotemporal graph for pedestrian p from the time-series
signal of skeletons S(t, p). This spatiotemporal graph links the
corresponding keypoints between adjacent time points along
the temporal domain. We express the spatiotemporal graph
G(p) for pedestrian p as

G(p) = {S(t, p) | t ∈ T }. (2)

4) P4: Classification: We input the spatiotemporal graph
G(p) and output a label that represents conversation activity.
As the classification network, we use ST-GCN [6], which
simultaneously performs spatial convolution and temporal
convolution. Specifically, we randomly generate multiple short
subgraphs from the spatiotemporal graph, feed each subgraph
into ST-GCN, and obtain multiple label candidates represent-
ing conversation activity. Finally, we use a majority vote over
these candidates to produce the conversation activity label. The
output label is one of the three categories: active, inactive, or
no conversation.

During both the training and inference of ST-GCN, we
randomly generate K short subgraphs Ĝ(p) that have different
initial time points from a single spatiotemporal graph G(p). We
define a short subgraph Ĝ(p) as

Ĝ(p) = randamsampling(G(p)) = {S(t̂,p) | t̂ ∈ T }, (3)

where T̂ is the set of time points t̂ that belong to a short
subgraph. One short subgraph Ĝ(p) is generated by the random
selection of an initial time point followed by the advancement
of the time point at fixed interval I until the collection of T̂
spatial skelton graphs S(t̂, p). As noted in Section II-C1, the
total number of time points in the set T is T ; consequently,
the spatiotemporal graph G(p) also contains T time points.
Let T̂ be the number of time points contained in one short
subgraph, where T̂ < T . During the training phase, our
method generates K short subgraphs Ĝ(p) with different initial
time points from a single training spatiotemporal G(p), and
trains ST-GCN using LK short subgraphs generated from L
training spatiotemporal graphs. During the inference phase,
we generate K short subgraphs from an input spatiotemporal
graph, obtain K label candidates for conversation activity,
and finally output the label using majority voting over these
candidates.

III. EXISTING METHOD

We describe the procedures of the existing method [1].
Figure 2 shows an overview of the existing method. We
describe each procedure below.

• P̄1 Pedestrian segmentation: Given a color video se-
quence, this procedure estimates human body regions
by segmenting the whole body of each pedestrian that
appears in the video sequence using Mask R-CNN [8].

• P̄2 SMPL estimation: From the appearance of the pedes-
trian regions obtained in P̄1, this procedure estimates
the SMPL model parameters that describe body pose
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and shape using PHALP [9] and then converts these
parameters into a 3D mesh structure.

• P̄3 Interaction video sequence generation: Using the 3D
mesh structure converted from the SMPL model in P̄2,
this procedure renders the mesh structure onto the image
plane to create the interaction video sequence. The exist-
ing method refers to the video sequence that represents
body interaction as the interaction video sequence.

• P̄4 Classification: The interaction video sequence gen-
erated in P̄3 is fed into the classification network of
C3D [10], which outputs a conversation activity label.
First, multiple short video sequences generated from
a single interaction video sequence are input into the
network. Second, a label is produced for each short
video sequence and the final conversation activity label
is determined by majority vote.

IV. EXPERIMENTS

A. Dataset

To verify the effectiveness of our method, we used the
dataset collected in experiments for the existing method [1].
Figure 3 shows sample images in which the regions of pedes-
trian groups are highlighted. We prepared three conversation
activity labels: active, inactive, and no conversation. The active
label indicates that the pedestrian group is engaged in a lively
conversation on topics of mutual interest. The inactive label
indicates that the group is not engaged in a lively conversation,
for example, because the topic is of little interest. The no
conversation label indicates that no conversation is taking
place. The dataset comprised 52 × 4 × 3 = 624 color video
sequences collected from 52 pedestrian pairs and the total
duration of all sequences was approximately 3.4 hours.

B. Experimental conditions

In the experiments, we used the following procedures of our
method and the existing method to confirm whether points I1
and I2 described in Section I were achieved.

• Evaluation of I1: comparison between Procedure P2 of
our method and Procedure P̄2 of the existing method in
the body movement parameter inference stage.

• Evaluation of I2: comparison between Procedure P3 of
our method and Procedure P̄3 of the existing method in
the feature extraction stage.

We also compared the total processing times of all procedures
for both methods.

We evaluated recognition accuracy using the leave-one-
pedestrian-pair-out scheme for both our method and the ex-
isting method. Moreover, we repeated the recognition accu-
racy evaluation ten times because random sampling involved
feature construction for both methods.

C. Parameters of our method

The ST-GCN [6] network model was composed of ten spa-
tiotemporal convolution layers, one average-pooling layer, and
one fully connected layer. A residual block was inserted after
each spatiotemporal graph convolution. In the spatiotemporal
convolution layers, the kernel size was set to 3 for spatial
convolution and 9 for temporal convolution. For the short
subgraph parameters described in Section II-C4, the settings
were as follows: I = 18, K = 50, and T̂ = 16. The resulting
input short time-series array had the shape of 16 (time points)
× 17 (keypoints) × 2 (x, y channels). SGD was used as the
optimizer with the following hyperparameters: learning rate
0.00002, momentum 0.9, weight decay 0.0004, and mini-batch
size 32. For the existing method, the default hyperparameter
settings were those reported in [1].

D. Results

Table I presents the computation times of our method during
inference, whereas Table II presents the corresponding times
for the existing method. The experimental result showed that
Procedure P2 of our method required less computation time
than Procedure P̄2 of the existing method. The experimental
result showed that Procedure P3 of our method was much
faster than Procedure P̄3 of the existing method. When the
computation times were summed, our method was approxi-
mately 10.5 times faster than the existing method.

Table III lists the GPU memory usage of our method during
inference and Table IV lists that of the existing method.
Procedure P2 of our method consumed less GPU memory
than Procedure P̄2 of the existing method. Procedure P3 of our
method also consumed less GPU memory than Procedure P̄3
of the existing method. A comparison of total GPU memory
usage indicated that our method reduced the requirement to
approximately 61 % of that of the existing method.

Table V compares conversation activity recognition accu-
racies between our method and the existing method. The
results confirm that our method’s recognition accuracy was
comparable to or higher than that of the existing method.



TABLE I
COMPUTATION TIME OF OUR METHOD DURING INFERENCE

Procedure Time Unit
P1 Pedestrian detection 0.085 seconds per frame
P2 Skeleton estimation 0.021 seconds per frame
P3 Spatiotemporal graph construction 0.000 seconds per frame
P4 Classification 0.001 seconds per short subgraph

Total 0.107 seconds

TABLE II
COMPUTATION TIME OF THE EXISTING METHOD DURING INFERENCE

Procedure Time Unit
P̄1 Pedestrian segmentation 0.249 seconds per frame
P̄2 SMPL estimation 0.326 seconds per frame
P̄3 Interaction video sequence generation 0.542 seconds per frame
P̄4 Classification 0.007 seconds per short video sequence

Total 1.124 seconds

TABLE III
GPU MEMORY USAGE OF OUR METHOD DURING INFERENCE

Procedure Memory usage (MiB)
P1 Pedestrian detection 978
P2 Skeleton estimation 1002
P3 Spatiotemporal graph construction 0
P4 Classification 1194

Total 3174

TABLE IV
GPU MEMORY USAGE OF THE EXISTING METHOD DURING INFERENCE

Procedure Memory usage (MiB)
P̄1 Pedestrian segmentation 1020
P̄2 SMPL estimation 1220
P̄3 Interaction video sequence generation 1227
P̄4 Classification 1690

Total 5157

V. CONCLUSIONS

We investigated the effectiveness of a technique that rec-
ognizes conversation activity using skeleton spatiotemporal
graphs, estimated from color video sequences, as informative
and compact features. The experimental results confirmed
that our method significantly reduced computation time and
GPU memory usage while achieving recognition accuracy
comparable to or higher than the existing method.

In future work, we intend to apply conversation activity
recognition to various video sequences collected in more prac-
tical scenarios. We will extend the framework to pedestrian
groups with three or more members and scenes in which group
membership changes over time. We will also investigate adap-
tive spatiotemporal graph construction that handles occlusion,
missing keypoints, and large pose variations.
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TABLE V
ACCURACIES OF OUR METHOD AND THE EXISTING METHOD

Method Accuracy (%)
Our method 80.3 ± 0.8
Existing method [1] 76.2 ± 0.7
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