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Abstract. We introduce a method for recognizing conversation activity
in a group of people walking outdoors using a color video sequence ac-
quired from a camera. Many methods have been developed to recognize
whether people are walking together or talking together in a color video
sequence. However, a method has yet to be proposed to recognize conver-
sation activity in a pedestrian group walking outdoors. In this paper, we
design a feature extraction approach for conversation activity recognition
using physical body interactions caused by pedestrians’ conversations.
Our method generates an interaction video sequence in a virtual space
using a temporal posture signal and a temporal walking position signal
that represent pedestrians’ body interactions. Our method uses the inter-
action video sequence as an informative and visible feature to determine
a conversation activity label. The experimental results showed that our
interaction video sequence recognized conversation activity more accu-
rately than alternative techniques that use the appearance of the body
regions of a pedestrian group or time-series changes of the posture and
walking position among pedestrians.

Keywords: Conversation activity recognition · Pedestrian groups · Hu-
man body interaction.

1 Introduction

A demand exists for technology that can automatically recognize human inter-
actions within a group of people walking outdoors. In this study, we focus on
conversation activity as one form of human interaction in a pedestrian group.
We define conversation activity as whether a conversation is occurring within a
pedestrian group and whether the conversation is active or inactive. One pos-
sible application of conversation activity recognition is marketing in a scenario
in which many pedestrian groups are walking in the aisles of a shopping mall.
Figure 1 shows an example of the application. By comparing the number of
pedestrian groups engaged in active conversation between visitors that are ar-
riving and leaving, it may be possible to determine whether visitors are satisfied
with their visit.

We consider what feature can be used to recognize conversation activity in a
pedestrian group. A possible feature is the chronological change of speech sounds,
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Fig. 1: We assume that an application for conversation activity recognition exists.
This application can determine whether pedestrian groups are satisfied with
their visit by comparing the number of pedestrian groups engaged in active
conversation between visitors that are arriving and leaving.

such as the timing of pedestrians’ utterances and the inflection of pedestrians’
voices. However, because we target a group of pedestrians walking outdoors, it
is difficult to use a microphone for voice sensing for each pedestrian. Instead,
we consider using a color video sequence acquired from a surveillance camera
as a feature that represents a human body interaction performed in a pedes-
trian group. We assume that the time-series changes in gestures performed by
each pedestrian, and the time-series changes in pedestrians’ body orientation
and walking position, provide a visible and informative feature for conversation
activity recognition. When analyzing speech among people [12], it is well known
that gestures, that is, movements produced by the body in response to speech,
are helpful. Regarding the analysis of pedestrian group behavior [23] and the
development of the group detection method [2], it is well known that body ori-
entation and the walking position, which are interrelated among pedestrians that
belong to one group, are helpful. In this study, our definition of physical body
interaction consists of gestures, pedestrians’ body orientation, and pedestrians’
walking position.

We consider how to design a method to recognize conversation activity using
the body interaction feature in a video sequence. To the best of our knowl-
edge, a method has yet to be proposed to recognize conversation activity in a
pedestrian group. Instead, we survey existing methods for recognizing the pres-
ence or absence of body interaction in a pedestrian group, such as whether the
pedestrians are walking together or talking together in a video sequence. These
existing methods can be divided into two main categories. The first category con-
tains methods [5, 24, 2, 18, 19] that detect the presence or absence of a pedestrian
group. The second category contains methods [9, 17, 13] that recognize whether
people in a group are talking together, given that a pedestrian group has been
detected. More recently, methods [3, 6, 15] have emerged that detect the presence
or absence of a pedestrian group and simultaneously recognize the presence or
absence of conversations within that group. However, even when these existing
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methods are applied, it is impossible to recognize whether the conversation is
active or inactive in a pedestrian group.

In this paper, we propose a novel method for recognizing conversation activ-
ity in a pedestrian group by extracting an interaction video sequence as a feature,
which has high recognition accuracy and can be visually confirmed by human
observers. Our method generates an interaction video sequence in a pedestrian
group using a temporal posture signal and temporal walking position signal esti-
mated from a color video sequence. By applying this interaction video sequence
to the class classification network, our method determines a conversation activity
label: active conversation, inactive conversation, or no conversation. The active
conversation label indicates the state in which the pedestrian group is having a
lively conversation on topics of mutual interest. The inactive conversation label
indicates the state in which the group is not having a lively conversation on
topics of no interest. The no conversation label indicates the state in which no
conversation is occurring.

The salient contributions of this paper are as follows:

– We extract an informative feature using an interaction video sequence ren-
dered in a virtual space by fixing the viewpoint position of the virtual camera
in front of a pedestrian group.

– We design a visible feature that allows human observers to directly see phys-
ical body interaction performed in a pedestrian group.

– On an originally collected outdoor pedestrian dataset of 624 video sequences
in 52 groups, we demonstrated that our interaction video sequences achieved
high accuracy in conversation activity recognition.

From the experimental results, we confirmed that our method using an interac-
tion video sequence recognized conversation activity more accurately than using
color video sequences of pedestrian body regions or using a temporal posture
and walking position signal.

2 Method for recognizing conversation activity

2.1 Overview

In this paper, we assume that body interaction arising from conversation activity
among pedestrians is represented explicitly by time-series signals of the posture
and walking position. Figure 2 shows an overview of our method. In the following,
we describe the procedure in our method.

P1. Body region estimation:
We estimate the region that represents the body of a pedestrian at each time
point in a color video sequence acquired from a surveillance camera.

P2. Temporal posture signal estimation:
We estimate a temporal posture signal from the appearance of a pedestrian
body region at each time point. Specifically, we use the three-dimensional
(3D) human body model to extract a time-series signal that represents only
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Fig. 2: Overview of our method for conversation activity recognition. We estimate
body region images from a color video sequence acquired from a camera in P1.
Our method obtains a temporal posture signal and temporal walking position
signal that represents the body interaction caused by the conversation in P2 and
P3. We generate an interaction video sequence in a virtual space for extracting
an informative and visible feature in P4 and determine a conversation activity
label using the interaction video sequence in P5.

the posture change of each pedestrian. Using this signal, we represent pos-
ture changes in gestures and body orientation while pedestrians engage in
conversation in a group.

P3. Temporal walking position signal estimation:
We estimate a temporal walking position signal by calculating the feet’s cen-
ter of gravity from the pedestrian’s body region at each time point. Specifi-
cally, we estimate the center of gravity of the feet’s contour for each pedes-
trian and determine the walking position on the road surface by applying a
homography transformation. Using this signal, we extract temporal changes
that represent positional relationships in a conversation in a group.

P4. Interaction video sequence generation:
Our method generates an interaction video sequence of a pedestrian group
using 3D rendering with a temporal posture signal of P2 and temporal walk-
ing position signal of P3. By always fixing the virtual camera viewpoint in
front of the pedestrian group, we extract a feature that can capture the
body interaction that effectively recognizes the conversation activity label.
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We also design a feature that allows human observers to visually and tem-
porally confirm physical body interactions in a group.

P5. Conversation activity label classification:
We determine the conversation activity label using a classification network
for an interaction video sequence of P4. We use three conversation activity
labels: active conversation, inactive conversation, and no conversation. We
explain the details of these labels in Section 3.2. We generate multiple short
video sequences from a single interaction video sequence and output multiple
candidate labels from the classification network using these short video se-
quences. A majority vote among these candidate labels determines the final
conversation activity label.

In the following sections, we describe each procedure in detail.

2.2 Body region estimation

In procedure P1, we estimate the pedestrian body region from a video sequence
acquired from a camera. The body region video sequence R(p) that consists of
pedestrian body pixels and surrounding background pixels is expressed as

R(p) = {R(t, p) | t ∈ T }, (1)

where R(t, p) is the body region image of each pedestrian p at time point t,
T is a set that consists of the times when the images were acquired, and T
is the total number of times that belong to the set T . T also represents the
length of time from when a pedestrian enters the camera’s field of view until
the pedestrian leaves. Note that R(t, p) consists of a pedestrian body region and
the background region surrounding it. R(t, p) stores a mask, whether each pixel
belongs to the body or background region, and the RGB value of each pixel. We
use Mask R-CNN [7], which is internally called from within PHALP [16], at each
time point to estimate the pedestrian body region. PHALP is a body posture
and shape estimation method, as described in the next section. This method
also performs pedestrian tracking and determines each pedestrian p of R(t, p).

2.3 Temporal posture signal estimation

In procedure P2, we estimate a temporal posture signal from the body region
video sequence R(p) to represent the changes of gestures and body orientation
in a conversation among pedestrians. First, we estimate the pedestrian’s posture
from the body region image R(t, p) ∈ R(p). The posture is denoted by V(t, p),
a set of 3D vertices v(t, p) on the pedestrian’s body surface, and their adjacent
vertices. A temporal posture signal V(p) is expressed as

V(p) = {V(t, p) | t ∈ T }. (2)

In this study, to estimate V(t, p), which represents the posture changes, we apply
PHALP [16] described in the previous section. PHALP is a method for track-
ing people in monocular movies by predicting their future 3D representations.
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Fig. 4: Parameters used to calculate position
f(t, p) of the feet’s center of gravity.

This method involves estimating temporal models for the 3D pose, position,
and appearance and using these models for probabilistic matching and updat-
ing tracklets. PHALP uses SMPL [11], which is a 3D human body model, to
represent the posture and body shape parameters. The posture parameters are
specifically expressed as a rotation matrix at the 23 joint points of the human
body and a rotation matrix over the whole body. Using the estimated posture
parameters and the standard body shape parameters, we generate a set V(t, p)
that consists of 6,890 vertices v(t, p) on the body surface and their adjacent
vertices. Figure 3 shows examples of vertices on the body surface.

When estimating a temporal posture signal, outliers in the time direction
often occur suddenly. We detect outliers by applying a Hampel filter to the time-
series signal of the 3D vertex v(t, p) ∈ V(t, p). Then we interpolate the posture
parameters at the time of the outlier using the nearest neighbor technique from
the values at the surrounding time.

2.4 Temporal walking position signal estimation

In P3, we estimate a temporal walking position signal on a road surface to rep-
resent the pedestrian’s positional relationship caused by the conversation. First,
in the body region image R(t, p) ∈ R(p), our method estimates the position
of the feet’s center of gravity f(t, p) in the image coordinate system. Next, by
applying a homography transformation to convert the image coordinate system
to the road surface coordinate system, our method obtains the walking position
f̃(t, p). The temporal walking position signal F(p) is expressed as

F(p) = {f̃(t, p) | t ∈ T }. (3)

In the following, we describe how to calculate the position f(t, p) of the
feet’s center of gravity in the image coordinate system. Figure 4(a) shows the
parameters used to calculate this position. In the body region image R(t, p)
of pedestrian p at time t, our method obtains the image position x(j, t, p) =
(x(j, t, p), y(j, t, p)) of the point on the feet’s contour. Let J = {j} : j be a
natural number and ∀j, k ∈ J : j < k ⇒ x(j, t, p) < x(k, t, p). The origin is the
lower left corner of the bounding rectangle of the pedestrian region. Using the
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component y(j, t, p), which is the distance from the bottom (x(j, t, p), 0) of the
bounding rectangle to the feet’s contour, we calculate weight w(j, t, p) as

w(j, t, p) ∼ N (y(j, t, p)|0, σ2), (4)

where N () is a normal distribution with mean 0 and standard deviation σ. Note
that w(j, t, p) satisfies

∑
j∈J w(j, t, p) = 1. We obtain the position f(t, p) of the

feet’s center of gravity in the image coordinate system as follows:

f(t, p) =
∑
j∈J

w(j, t, p)x(j, t, p). (5)

By applying a homography transformation and setting the height on the road
surface to 0, we obtain the 3D walking position f̃(t, p) in the road surface coor-
dinate system.

In the following, we explain why weight w(j, t, p) is assigned to point x(j, t, p)
on the feet’s contour. Figure 4(b) shows an example when the legs are closed
during walking, and (c) shows an example when the legs are open. In the case of
closed legs, the candidate contour points mainly appear on the feet, and partially
on the hands and other body parts, as shown in the middle part of Fig. 4(b). In
the case of open legs, the candidate contour points mainly appear on the feet,
and partially on the crotch and other body parts, as shown in the middle part
of Fig. 4(c). To suppress the influence of candidate points that do not belong to
the feet, we assign small weights to these points in Eq. (5).

The temporal walking position signal F(p) sometimes contains outliers when
the feet’s contour is not estimated correctly because of the shadow of a pedestrian
on the road surface or markings, such as white lines. Our method detects outliers
by applying a Hampel filter and performs a linear interpolation.

2.5 Interaction video sequence generation

In procedure P4, we extract a feature that allows human observers to confirm the
body interaction visually. Specifically, we place pedestrians in the same group
in a virtual space using a temporal posture signal V(p) and temporal walking
position signal F(p), and generate an interaction video sequence S using 3D
rendering. In this virtual space, we visualize the temporal posture signal and
temporal walking position signal of each pedestrian using the standard body
shape parameters, which is the average person’s body shape prepared in SMPL,
as described in Section 2.3. When we render an interaction video sequence in
a virtual space, we always set the virtual camera viewpoint at a fixed position
in front of the pedestrian group to capture the physical body interaction which
increases the accuracy of conversation activity recognition.

In the following, we explain how to generate an interaction video sequence
S. Our method places the 3D vertex v(t, p) ∈ V(t, p) ∈ V(p) on the body sur-
face obtained in Section 2.3 at the walking position f̃(t, p) ∈ F(p) obtained in
Section 2.4. The 3D vertex ṽ(t, p) in the virtual space is converted as follows:

ṽ(t, p) = v(t, p) + f̃(t, p). (6)



8 W. Ganaha et al.

All vertices v(t, p) in a set V(t, p) are converted to ṽ(t, p). Suppose that a con-
verted set Ṽ(t, p) consists of ṽ(t, p) and their adjacent vertices. A temporal pos-
ture and walking position signal Ṽ(p) in the virtual space is expressed as

Ṽ(p) = {Ṽ(t, p) | t ∈ T }. (7)

Note that our method determines pedestrian p that belongs to the same group
using the distance between the walking positions f̃(t, p) of pedestrians. After
obtaining Ṽ(p) for a pedestrian group, we place each pedestrian that belongs
to the same group and perform 3D rendering to generate an image S(t). An
interaction video sequence S for each pedestrian group is expressed as

S = {S(t) | t ∈ T }. (8)

The posture parameters are sometimes estimated with an unnaturally large
tilt of the human body if a temporal posture and walking position signal Ṽ(p) is
directly used for rendering an interactive video sequence. Our method corrects
the human body’s inclination relative to the road surface by always setting the
rotation angle to 0 degrees.

2.6 Conversation activity label classification

In P5, we apply an existing classification network developed in action recognition
to determine conversation activity labels using an interaction video sequence S.
We use the C3D network [20] that consists of 3D convolution layers designed
for action recognition. Our method divides an interaction video sequence into
multiple short video sequences, which are input into the C3D network to pre-
dict candidate labels that represent conversation activity for each short video
sequence. A majority vote among these candidates determines the final label.

In the following, we explain the details of our method for determining the
conversation activity label. Our method generates K short video sequences with
different initial times from a single interaction video sequence S during the C3D
network training and prediction process. Short video sequence Ŝ is expressed as

Ŝ = {S(t̂) | t̂ ∈ T̂ }, (9)

where T̂ is a set of time points t̂ of the image S(t̂) that belong to the short
video sequence. Our method randomly determines the initial time point t̂1. We
generate a short movie sequence Ŝ when T̂ (< T ) images are collected by pro-
gressing time at equal intervals I from t̂1. T̂ also represents the total number of
time points in the short video sequence. During the training process, we train
the C3D network using LK short video sequences generated from L interaction
video sequences prepared in advance. During the prediction process, we calcu-
late K candidates for the conversation activity label using the input short video
sequences generated from an interaction video sequence, and finally determine
the output label using majority voting among candidates.
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Fig. 5: Camera setting for collecting color video sequences of pedestrian groups
while they were walking outdoors and conversing.

3 Experiments

3.1 Dataset

To investigate the effectiveness of our method, we collected color video sequences
of pedestrian groups while they were walking outdoors and conversing. Fig-
ure 5(a) shows the camera setting. We set the height from the road surface to
the camera (SONY, FDR-AX55) to 21.4 m to obtain an overhead view of an
outdoor parking lot. The camera resolution was 3840×2160 pixels and the frame
rate was 30 fps. Figure 5(b) shows the road surface coordinate system described
in Section 2.4. We pre-computed the homography matrix from four white line
intersections on the road surface. The camera position in the road surface coor-
dinate system was (10.7, 59.3, 21.4).

We recruited 20 participants (19 men, one woman, 22.6±1.3 years old, univer-
sity students, Japanese ethnicity). When recruiting the participants, we required
that they be somewhat acquainted with each other to avoid a lack of conversa-
tion when they first met each other. We controlled the number of pedestrians
in a group to a minimum of two participants with whom a conversation could
occur. We randomly selected two pedestrians from the 20 participants without
duplicates to form a single pedestrian group. We prepared 52 pedestrian groups.
We controlled each pedestrian group so that the two participants walked side by
side, which is considered to occur most frequently in real scenarios.

We acquired color video sequences of pedestrian groups walking outdoors for
each conversation activity label (active conversation, inactive conversation, and
no conversation). In one color video sequence, a pedestrian group appeared in
the camera’s field of view from the start to the end, when it disappeared. To
confirm the robustness of the virtual camera viewpoint used in our method, we
set four walking paths on the road surface: back to front, front to back, top
right to bottom left, and bottom left to top right, as shown in Fig. 5(c). We
randomized the order in which the participants walked along each path and
the order in which the two participants lined up next to each other. In total,
we collected 52 (groups) × 3 (labels) × 4 (walking paths) = 624 color video
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Fig. 6: Examples of the pedestrian group video sequences R′ generated from the
color video sequences.

sequences. Figure 6 shows examples of the pedestrian group video sequences
R′ generated from the collected color video sequences. To generate R′, we set
a region of interest for the color video sequence so that two pedestrians that
belonged to the same group were within the same field of view using the body
region image R(t, p) ∈ R(p) estimated in procedure P1.

3.2 Conversation activity labels

When collecting color video sequences, we only instructed the participants on
the topic of the conversation and did not give any explanation or instructions
regarding the physical body interaction. We set the following conditions for
collecting color video sequences for each conversation activity label.

Active conversation:
As a topic of conversation, we instructed the participants to introduce their
hobbies while walking. We collected color video sequences while a pedestrian
talked about a hobby, the other pedestrian responded to it, and started a
new conversation about a hobby.

Inactive conversation:
As a topic of conversation, we instructed the participants to talk about
topics of little interest to each other while walking. The topic was chosen
by the participants from several candidate topics prepared in advance (e.g.,
economic situation and political situation in a country that the participants
had never visited and had almost no knowledge of).

No conversation:
We instructed the participants not to engage in any conversation while walk-
ing.
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Fig. 7: Examples of interaction video sequences S.

We randomized which pedestrians in the group initiated the conversation when
collecting active and inactive labels.

3.3 Experimental conditions

In the following, we describe the experimental conditions for procedures P1
through P3. We used the default parameters provided for PHALP in P1 and
P2. The window size of the Hampel filter in P2 and P3 was 5. We set the body
shape parameters of SMPL to the default parameters provided by PHALP. We
automatically determined the σ of Eq. (4) in P3 according to the height of the
pedestrian’s bounding rectangle. Specifically, σ increased as the height increased
and σ decreased as the height decreased.

Next, we describe how to determine the virtual camera viewpoint for gener-
ating interaction video sequences in procedure P4. We determined the direction
in which a pedestrian group walks on a road surface by fitting a straight line
using the group’s center positions at all time points. We always kept the vir-
tual camera viewpoint at a distance of 4.25 m from the center position in the
direction of the pedestrian group. The height of the virtual camera viewpoint
was 0.85 m from the road surface. Figure 7 shows examples of the interaction
video sequences S. The color scheme for each pedestrian was either light red or
light blue and was determined randomly without duplication. We believe that
human observers can visually confirm the posture among pedestrians, such as
arm bending and face orientation, and the positioning of the pedestrians in each
group, from the interaction video sequences in the figure.

The C3D network [20] in procedure P5 consisted of four convolution layers,
four pooling layers, and two affine layers. The filter size for 3D convolution was
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3× 3× 3. Time length T̂ of a short video sequence Ŝ was 16. We set the array
size of the short video sequences to 100 (pixels) × 100 (pixels) × 3 (colors) ×
16 (time points). We set I = 18 and K = 50 for the parameters described in
Section 2.6. We used RMSprop as the optimizer when training the C3D network,
with a learning rate of 0.0001 and mini-batch size of 16. We trained the C3D
network from scratch.

We applied leave-one-group-out when evaluating the accuracy of conversa-
tion activity recognition. Specifically, we used 12 interaction video sequences
generated from one pedestrian group for the prediction process and L = 612 in-
teraction video sequences generated from the remaining 51 pedestrian groups for
the training process. We repeated the training and prediction processes for all 52
pedestrian groups. We prepared 3 (labels) × 4 (walking paths) = 12 interaction
video sequences per pedestrian group.

We evaluated the computational cost of our method on a PC equipped with a
GPU (RTX 2080 Ti) and CPU (i9-9940X). The processing time was 0.29 seconds
for P1, 0.66 seconds for P2, 0.05 seconds for P3, and 0.58 seconds for P4 per
video sequence frame. The processing time for P5 was 0.01 seconds per short
video sequence during prediction. The total GPU memory usage was 4.7 GB.

3.4 Basic performance

We evaluated the effectiveness of our method using interaction video sequences as
features. For comparison, we used the following features to calculate the accuracy
of conversation activity recognition.

M1: Interaction video sequence S
We used S generated in procedure P4 of our method as the feature. Specif-
ically, we generated short video sequences Ŝ in procedure P5 from S. The
array size of the short video sequence was 100 (pixels) × 100 (pixels) × 3
(colors) × 16 (time points).

M2: Pedestrian group video sequence R′

We used R′, which represents the appearance of the pedestrian group, as the
feature. Examples of R′ were already shown in Fig. 6. We directly passed
the pedestrian group video R′ to procedure P5 and generated short video
sequences from R′. The array size of the short video sequence was 100 (pixels)
× 100 (pixels) × 3 (colors) × 16 (time points).

M3: Temporal posture signal V(p)
We used V(p) estimated from each pedestrian that belonged to the same
group as the feature. Specifically, we directly passed V(p) estimated in pro-
cedure P2 to procedure P5 and then generated short temporal signals. The
array size of the short temporal signal was 6890 (vertices) × 2 (pedestrians)
× 3 (components) × 16 (time points).

M4: Temporal posture and walking position signal Ṽ(p)
We used Ṽ(p), combining a temporal posture signal V(p) with the temporal
walking position signal F(p) estimated from each pedestrian that belonged
to the same group as the feature. Specifically, we directly passed Ṽ(p) gen-
erated in procedure P4 to procedure P5 and then generated short temporal
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signals. The array size of the short temporal signal was 6890 (vertices) × 2
(pedestrians) × 3 (components) × 16 (time points).

We input each feature into the C3D network to predict the conversation activity
label in P5. We calculated accuracy using the number of correctly predicted con-
versation activity labels. Because there was random sampling when we extracted
each feature, we set the number of trials used to calculate recognition accuracy
to 10. In M3 and M4, to align the dimensionality with other features, we ran-
domly sampled 5000 vertices and then transformed the array size from 5000 × 2
× 3 × 16 to 100 × 100 × 3 × 16. In each accuracy evaluation trial, we assumed
that the vertices sampled in all short temporal signals were the same. The other
experimental conditions were the same as those described in Section 3.3.

Table 1 shows the accuracy of using each feature in conversation activity
recognition. Recognition accuracy was 76.2±0.7% for interaction video sequence
S of M1, 57.3±1.3% for pedestrian group video sequence R′ of M2, 72.9±0.9%
for temporal posture signal V(p) of M3, and 74.1±0.7% for temporal posture and
walking position signal Ṽ(p) of M4. In all cases, we confirmed that our method
M1 was more accurate than M2, M3, and M4. These results indicate that using
a feature of an interaction video sequence generated by our method was more
effective in recognizing conversation activity than using a feature of a pedestrian
group video sequence, a temporal posture signal, or a temporal posture and
walking position signal.

Instead of C3D, we applied TimeSformer [1] as a video action recognition
method and LSTM [8] as a time series analysis method. TimeSformer performed
fine-tuning on a model pre-trained with Kinetics-400, whereas LSTM trained a
model from scratch. The recognition accuracies were 71.8±0.7% for TimeSformer
and 67.1 ± 1.1% for LSTM. Our method obtained higher recognition accuracy
(76.2±0.7%) than the existing methods. The GPU memory usage was 1.3 GB for
C3D used in our method, 6.1 GB for TimeSformer, and 0.7 GB for LSTM. We
believe that our method is reasonable in terms of the trade-off between accuracy
and memory usage.

We evaluated the recognition accuracy of our method for the case of several
groups walking simultaneously. The number of groups in each frame ranged from
0 to 3. We used a total of 120 groups. The accuracy of our method was 67.4±0.2%.
Although our method performed well in this case with minimal occlusion, it is
important to note that real-world scenarios often involve heavy occlusion caused
by people overlapping. This presents a significant limitation that we need to
address in future work. For practical applications, we must develop methods for
various scenarios, such as heavy occlusion and interaction with objects such as
shopping trolleys.

3.5 Evaluation of different virtual camera viewpoints

We evaluated the accuracy of conversation activity recognition for different vir-
tual camera viewpoints when generating an interaction video sequence in pro-
cedure P4. We set the positions of the virtual camera viewpoints on C1 front,
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Table 1: Comparison of the accuracy of conversation activity recognition using
each feature.

Feature for conversation activity recognition Accuracy (%)
M1: Interaction video sequence S 76.2±0.7
M2: Pedestrian group video sequence R′ 57.3±1.3
M3: Temporal posture signal V(p) 72.9±0.9
M4: Temporal posture and walking position signal Ṽ(p) 74.1±0.7

C1: Front C3: Overhead C5: Right sideC2: Back C4: Underfoot C6: Left side

Fig. 8: Examples of interaction video sequences generated from different virtual
camera viewpoints in procedure P4 of our method.

C2 back, C3 overhead, C4 underfoot, C5 right side, and C6 left side. Figure 8
shows interaction video sequences generated using these virtual camera view-
points. We changed only the position of the virtual camera viewpoint; the other
experimental conditions were the same as those described in Section 3.4.

Table 2 shows the accuracy for each virtual camera viewpoint when gener-
ating interaction video sequences. We confirmed that C1, in which the virtual
camera viewpoint was the front of the pedestrian group, had higher recognition
accuracy than C2, C3, C4, C5, and C6, in which the virtual camera viewpoint
was not the front of the pedestrian group. Furthermore, we checked the recogni-
tion accuracy of our method C1 for each walking path in Fig. 5(c). We achieved
the same level of accuracy for all walking paths. Based on these results, when
generating interaction video sequences in procedure P4, placing the virtual cam-
era viewpoint in a position that always captured a pedestrian group from the
front led effectively to the recognition of conversation activity.

4 Conclusions

We proposed a method for recognizing conversation activity in a group of pedes-
trians walking outdoors using interaction video sequences that represent human
body interactions. The experimental results demonstrated that our method is su-
perior to the alternative techniques using pedestrian body region video sequences
or temporal posture and walking position signals in conversation activity recog-
nition. We believe that our method can be implemented in a variety of potential
applications in addition to the marketing applications described in Section 1. For
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Table 2: Accuracy of conversation activity recognition when generating interac-
tion video sequences from different virtual camera viewpoints in P4.

Virtual camera viewpoint Accuracy (%)
C1: Front 76.2±0.7
C2: Back 74.8±0.3
C3: Overhead 70.2±0.8
C4: Underfoot 72.0±0.9
C5: Right side 40.0±1.5
C6: Left side 48.2±2.6

example, we considered medical applications for dementia checking, office appli-
cations for mental health checking, and educational applications for bullying
detection. In future work, we intend to develop a method to recognize conver-
sation activity at multiple levels and a robust method for occlusion. We will
expand evaluations by increasing the number of pedestrians in the same group
and changing the positional relationship of pedestrians within a group. We will
perform a performance comparison with group activity recognition methods, for
example, ARG [21], Actor-Transformers [4], GroupFormer [10], DIN [22], and
KRGFormer [14]. We appreciate Professor Yoshio Iwai’s valuable advice and
suggestions during this study. We would like to thank Mr. Norihiko Torii, Mr.
Tomohiro Miyake, and Mr. Osamu Yoshimura of SEIRYO ELECTRIC Corpo-
ration for their helpful advice on this paper.
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