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Abstract. We propose a method for visualizing where an observer’s
gaze focuses on a subject in a still image using a neutral human body
model. Generally, two-dimensional (2D) heatmaps are superimposed on
still images to visualize an observer’s gaze distribution, which indicates
where an observer looks when observing a subject. To investigate gaze
distributions, eye-tracking researchers need a method to directly compare
the 2D heatmaps because body pose and shape differ among subjects.
Thus, a comparison of the gaze distributions using the 2D heatmaps is
time-consuming if there is no acceptable method to handle the body pose
and shape variations. Instead, our visualization method superimposes a
three-dimensional (3D) heatmap representing the gaze distribution on
the surface of a neutral human body, which has a fixed pose and shape
for all subjects to visualize the locations at which an observer’s gaze
focuses. Experimental results show that our visualization method allows
eye-tracking researchers to compare gaze distributions more directly than
the conventional visualization method using 2D heatmaps on still images.

Keywords: Gaze distribution · 3D heatmap · neutral body model ·
visualization · vertex attention probability.

1 Introduction

There are many situations in which people gather together, such as parties and
conferences. Eye-tracking researchers in the computer vision and cognitive sci-
ence fields investigate the gaze distributions of people in these situations, because
these gaze distributions indicate the behavior of the observers when they look
at the bodies of other people. For example, consider a situation in which some
observers judge the aesthetics of subjects attending a ceremonial party. In this
situation, the eye-tracking researchers measure the gaze distributions of the ob-
servers during this judgement. The researchers then compare the measured gaze
distributions of the subjects to determine whether the gaze behaviors of the ob-
servers differ. To perform this comparison, it is necessary to visualize the gaze
distribution so that the researchers can directly compare the locations on the
subjects where the observers focus their attention.
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Fig. 1. (a) Measuring and visualizing where an observer’s gaze focuses when they look
at the subjects in the still images. (b) Superimposing the measured gaze distributions
onto the images using 2D heatmaps. (c) Superimposing the distributions on a neutral
human body model using 3D heatmaps.

We here consider how to compare whether there are differences in the mea-
sured gaze distributions of observers observing an attractive female and male
subject. The body poses and shapes of the female and male subject are very
different, as shown in the examples in Fig. 1(a). In these examples, the woman
has both hands down, and the man has one hand up. Moreover, the woman is
slender, and the man is muscular. As these examples illustrate, subjects have var-
ious body poses and various body shapes in such situations. Hence, eye-tracking
researchers need a visualization method that can directly compare the gaze dis-
tributions among subjects, even when they have different body poses and body
shapes.

Two-dimensional (2D) heatmaps are often superimposed on still images to
visualize where an observer’s gaze focuses on a subject. Figure 1(b) shows exam-
ples of this visualization. In fact, eye-tracking researchers have commonly used
2D heatmaps to represent gaze distributions [8, 6, 4]. However, body poses and
shapes differ among subjects when this method is used. To compare where the
gazes of observers focus in the examples in Fig. 1(b), eye-tracking researchers
must pay attention to the different poses of the hands and arms and the different
body shapes of the man and woman. Therefore, a visualization that superimposes
2D heatmaps on still images is time-consuming for eye-tracking researchers to
analyze them. Other visualization methods [9, 10] have been proposed in which
3D heatmaps representing the gaze distributions are superimposed on the sur-
face of artificial objects by aligning the shapes of known objects. It is easier for
eye-tracking researchers to directly compare gaze focus on artificial objects with
rigid body shapes in various poses. However, applying these methods [9, 10] to
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human subjects is restricting because humans are non-rigid and have various
body shapes in different poses.

Here, we propose a visualization method that superimposes 3D heatmaps on
the surface of a neutral human body to directly compare the locations of observer
gazes when the observers look at subjects in still images. We use a neutral human
body model with a body pose and shape that are normalized among subjects.
Our visualization method allows eye-tracking researchers to directly compare
the gaze distributions on the common 3D surface of the neutral human body
model, even if the body poses and shapes of the subjects in still images differ.
Figure 1(c) shows examples of 3D heatmaps representing gaze distributions by
superimposing them on the 3D surface of the neutral human body model. In our
visualization, it is not necessary to consider the differences in the body poses and
shapes of the subjects. In addition, the observer gaze distributions can be directly
compared by simply looking at the spatially aligned 3D heatmaps superimposed
on the surface of the neutral human body model.

2 Our 3D heatmap-based visualization method

2.1 Overview

In our method, the 3D heatmaps represent which parts of the subject’s body
the gazes of observers focus. The 3D heatmaps are superimposed on the surface
of a neutral human body model. Figure 2 shows an overview of our method.
Our method generates images visualizing the measured gaze distributions of the
observer using steps S1 to S3 and the neutral human body model connecting
these steps.

S1. Computation of the pixel attention probability
We calculate the probability that the gazes of observers focus on the 2D
positions of the pixels in region of the subject in the still image. We call this
the pixel attention probability.

S2. Computation of the vertex attention probability
Using the relationship between the 2D positions of the pixels of the subject
region and the 3D positions of the surface of the neutral human model, we
calculate the probability that the gazes focus on the vertices of the body
model. We call this the vertex attention probability.

S3. 3D heatmap overlay
We superimpose the 3D heatmap representing the vertex attention proba-
bilities onto the neutral human body model so that eye-tracking researchers
can directly compare the gaze distributions among subjects. To do this, we
generate an image visualizing each gaze distribution using the 3D heatmap.

Neutral human body model
We use a neutral human body model with a pre-determined constant body
pose and shape parameters to fix the pose and shape of the subjects. The
model consists of a set of 3D vertices and the adjacencies between them.
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Fig. 2. Overview of our method. When observers look at a certain subject in a still
image, we measure where their gazes focus on the subject, and visualize the gaze
distribution using the 3D heatmap representing the vertex attention probability.

Our method transforms the 2D positions of the pixels in the subject region
of the still image to the 3D positions on the surface of the neutral human
body model.

Here, we discuss the issue of the conventional visualization method using the
2D heatmap representing the pixel attention probability. When body poses and
shapes differ among subjects, the alignment of bodies in the subject regions
causes gaps among the still images. Therefore, it is difficult to directly compare
the pixel attention probability between subjects. Our method reduces the gap
between body poses and shapes using neutral human body model with a nor-
malized body pose in a normalized shape to represent the gaze distributions
using the 3D heatmaps. Our visualization method enables the vertex attention
probability among subjects with various body poses and shapes to be directly
compared. In the following, we describe the pixel attention probability in Sec-
tion 2.2, the neutral human body model in Section 2.3, the vertex attention
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probability in Section 2.4, and the 3D heatmap for generating the visualization
image in Section 2.5.

2.2 Pixel attention probability

Pixel attention probability indicates how much the measured gazes of the ob-
servers focus on each pixel in the subject region of the still image. Suppose that
the subject region I is the set of pixels xj , and the gaze is measured from ob-
server o at pixel xt in the subject region I at time t. We denote the probability
that the gaze is measured at a pixel xj ∈ I by

p(xj |o, t, I) ∼ N (xj |xt,Σp), (1)

where N (xj |xt,Σp) is a bivariate normal distribution with mean xt and covari-
ance matrix Σp. We assume Σp = diag

(
σ2
p , σ

2
p

)
. Here, p(xj |o, t, I) is assumed

to follow a normal distribution. The observer is not only looking at the pixel
xt where the gaze is measured and but also looking at the surrounding pixels.
Hence, to approximate this, we use the normal distribution. Pixcel attention
probability p(xj |o, t, I) satisfies the following equation:∑

xj∈I
p(xj |o, t, I) = 1. (2)

Note that eye-tracking researchers must handle pixel attention probability care-
fully because it is difficult to directly compare pixel attention probabilities among
subjects because body poses and shapes differ among subject regions in still im-
ages, as described in Section 1.

2.3 Neutral human body model

Several human body models [5, 2, 7] have been proposed to represent the human
body with various poses and shapes. In these human body models, pose and
shape are represented by continuous parameters in function space. We set up
the neutral human body model using constant values for the parameters of body
pose and shape for all subjects. This model allows us to transform different body
poses and shapes into a common body representation for all subjects.

The neutral human body model V consists of meshes based on a set of ver-
tices vl and the adjacencies between vertices, as described in [5, 2, 7]. To indicate
how much the gazes focus on a vertex vl, we could simply map pixel attention
probability of each pixel xj in the subject region of a still image to a vertex vl of
the neutral human body model using nearest neighbors. However, the vl vertices
are discrete, and this simple mapping will cause aliasing. For this reason, we use
the 3D position vj that exists continuously on the surface of the neutral human
body model.

The method for mapping the 2D position of pixel xj ∈ I in the subject
region of a still image to a 3D position vj on the surface of a neutral human
body model is as follows. Specifically, we transform it using function m() as

vj = m(xj ; I). (3)
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The function m() first estimates the body pose and shape parameters for each
subject in the still image using an existing method, e.g. [3, 11, 1, 12]. Next, the es-
timated pose and shape parameters are converted to constant values for the neu-
tral human body model. In this transformation, the 2D position of the pixel xj

can be automatically mapped to the 3D position vj .

2.4 Vertex attention probability

We define the vertex attention probability, which represents how much an ob-
server o focuses his/her gaze on a vertex vl of the neutral human body model V
when looking at the subject region I at time t as

p(vl|o, t, I) =
∑
xj∈I

p(vl|xj , I)p(xj |o, t, I), (4)

where p(vl|xj , I) is the probability that the gaze focuses on the 3D vertex vl of
the neutral human body model given the 2D pixel xj ∈ I. We transform the 2D
position of the pixel xj on the still image to the 3D position vj on the neutral
human body model surface using Eq.(3) as

p(vl|o, t, I) =
∑
xj∈I

p(vl|vj , I)p(xj |o, t, I). (5)

Obtaining this probability using geodetic distances is computationally expen-
sive. Therefore, we make the following assumption to reduce computation time.
First, we suppose that the pixel at which the gaze focuses is transformed to 3D
position vj on the neutral human body model. A smaller Euclidean distance
from vj to vertex vl on the neutral human body model means that the prob-
ability that the gaze is measured at that vertex will be higher. Based on this
assumption, we express p(vl|vj , I) ≃ N (vl|vj ,Σv) using a normal distribution
and calculate the vertex attention probability p(vl|o, t, I) as

p(vl|o, t, I) ≃
∑
xj∈I

N (vl|vj ,Σv)p(xj |o, t, I), (6)

where N (vl|vj ,Σv) is a trivariate normal distribution with mean vj and covari-
ance matrix Σv. In our method, the covariance matrix is Σv = diag

(
σ2
v , σ

2
v , σ

2
v

)
.

Note that p(vl|o, t, I) satisfies the following equation:∑
vl∈V

p(vl|o, t, I) = 1. (7)

Here, we further enhance the comparison of gaze distributions in eye-tracking
research. It is time-consuming to individually check the locations of gaze focus
for each observer o and at each time t. We hence marginalize the probabilities
using the set of observers O and set of measurement times T . Given subject
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region I in the still image, we calculate the marginal probability that the gazes
are measured at the vertex vl of the neutral human body model as follows:

p(vl|I) =
∑

o∈O,t∈T
p(vl|o, t, I)p(o)p(t). (8)

Let O be the number of elements in set O and T be the number of elements in
set T . Approximating p(o) using the uniform distribution 1/O and p(t) using
the uniform distribution 1/T , Eq.(8) is converted to

p(vl|I) =
1

OT

∑
o∈O,t∈T

p(vl|o, t, I). (9)

Note that p(vl|I) satisfies the following equation:∑
vl∈V

p(vl|I) = 1. (10)

We call p(vl|I) in Eq.(9) the vertex attention probability marginalized by the
set of observers O and set of measurement times T .

2.5 3D heatmap for generating the visualization image

To visualize the gaze distributions on a neutral body model for direct comparison
among subjects, we represent the vertex attention probability p(vl|I) using a
3D heatmap and overlay it onto the surface of the model. First, we consider a
simple, vertex-only heatmap visualization. Figure 3(a) shows examples of the
visualization images using the vertex-only heatmap. In the figure, vertices with
a higher probability of concentrated gazes are redder in hue, and those with a
lower probability of focused gazes are closer to blue. In these visualization images,
the front and back vertices of the neutral human body model are both visible,
making it difficult to compare the gaze distributions among subjects. Thus, we
continuously interpolate the colors representing the high and low probabilities
of focused gazes at 3D positions vj using a mesh on the surface of the neutral
human body model. Figure 3(b) shows examples of the visualization images using
the 3D mesh heatmap. This heatmap representation prevents the front and back
of the neutral human body model from being visible simultaneously, making it
easier to directly to compare the gaze distributions among subjects.

3 Experiments

3.1 Visualization images generation conditions

We evaluated the effectiveness of our method using visualization images gener-
ated by the following methods.

– Conventional method (M2d): We overlaid the 2D heatmap representing the
pixel attention probability described in Section 2.2 onto the still image.
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(a) (b)

Low HighVertex attention probability:

Fig. 3. Examples of visualization images using 3D heatmaps to represent vertex atten-
tion probabilities. (a) Using vertices only. (b) Using a 3D mesh.

– Our method (M3d): We overlaid the 3D heatmap representing the vertex
attention probability described in Section 2.4 onto the surface of the neutral
human body model.

Note that the conventional method M2d is equivalent to a visualization of the
measured gaze distributions of observers, such as the methods used in existing
analytical studies [8, 6, 4].

For our method M3d, we used SMPL [5] to implement the neutral human
body model described in Section 2.3. In the neutral human model used in this
experiment, we set the pose and shape parameters of SMPL to their default
values1. These default values specify that the body pose is one with arms out-
stretched and legs slightly open, and the body shape is average. The number
of SMPL vertices used was 6890. Adjacency was represented by the meshes of
triangles connecting the three vertices. We used DensePose [3] to estimate the
body pose and shape parameters of SMPL for each subject in the still image for
function m() of Eq.(3), as described in Section 2.3.

1 https://smpl.is.tue.mpg.de
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3.2 Gaze measurement

To obtain measured gaze distributions, we asked several observers the following
question Q so that they would evaluate the aesthetics of a subject in still images.

Q: Do you think that the subject’s hands are beautiful?

We instructed them to answer “yes” or “no.” The number of observers was 24
(12 men and 12 women), and the mean age of the observers was 22.4± 1.0 years
old.

We first explained question Q to the observers and showed them a randomly
selected still image on a display for 7 s. Figure 4(a) shows the still image given
to the observers as a stimulus. Subject 1 is a slender woman with her right hand
down and left leg slightly shifted forward. Subject 2 is a man with his right
hand raised and his legs shoulder-width apart. Subject 3 is a petite woman with
her right hand on her hip and her heels together. Figure 4(b) shows the subject
regions in the still images.

We measured each observer’s gaze using an eye tracker device while display-
ing the still image. This gaze measurement was repeated until all still images
were viewed. The observers were seated 65 cm from the display. We allowed the
observers to adjust the chair height so that the eye height was between 110 and
120 cm. We used a 24-inch display with a resolution of 1920 × 1080 pixels and
a Gazepoint GP3 HD eye tracker with a 60 Hz sampling rate. The spatial reso-
lution error of the eye tracker device is approximately one degree, as described
in the specifications. We displayed the still image at a random position on the
display to avoid center bias.

3.3 Visualization results

Figure 4(c) shows the visualization images generated using the conventional
method M2d, which superimposes the 2D heatmaps representing the pixel at-
tention probability on the still images. Because of the variation in the body
alignment among subjects, we must consider the differences in the body poses
and shapes when comparing the gaze distributions. With these differences in
mind, we can infer the following when comparing the results of Fig. 4(c). For
subject 1, the observers’ gazes focused most often on the right hand, followed
by the head. For subject 2, the observers’ gazes focused most often on the right
hand, followed by the head and left hand. For subject 3, the observers’ gazes
focused most often on the right and left hands, followed by the head. From
these results, we conclude that when question Q is given to observers looking at
subjects 1 through 3, the gazes mostly focus on the hands and then on the head.

Figure 4(d) shows the visualization images generated using our method M3d.
Our visualization results show that the body poses and shapes of the neutral
human body model are the same for all subjects. These 3D heatmaps make
the body alignment equal for all subjects so that when analyzing differences in
the gaze distributions, eye-tracking researchers only need to compare the same
positions on the surface of the model. The gaze distributions for subjects 1
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(a) Still images (b) Subject regions

(c) Visualization images using 𝑀2𝑑 for each subject.

(d) Visualization images using 𝑀3𝑑 for each subject.

Subject 1 Subject 2 Subject 3

Subject 1 Subject 2 Subject 3

Subject 1 Subject 2 Subject 3

Low High

Subject 1 Subject 2 Subject 3

Attention probability: 

Fig. 4. Visualization image results showing the attention probabilities of the measured
gaze distributions of observers looking at the still images.

through 3 reveal that the gazes most often focus on the hand, followed by the
head. We can reach this conclusion more directly using our method M3d than
when using the conventional method M2d.

3.4 Subjective assessment of the visualization images

Conditions of subjective assessment
We conducted a subjective assessment to determine whether the visualiza-
tion images generated by the conventional method M2d or those generated
by our method M3d enable the gaze distributions for various subjects to be
directly compared. Sixteen eye-tracking researchers participated in the sub-
jective assessment (13 men and three women). These researchers are graduate
students studying human and computer vision, including gaze measurement



Heatmap overlay using neutral body model for visualizing gaze distributions 11

150 cm

Display

90 cm

Eye-tracking 
researcher

65 inch

(a) Arrangement

(b) Conventional method 𝑀2𝑑

(c) Our method 𝑀3𝑑

Fig. 5. Setup of the subjective assessment.

and analysis. Their average age was 23.4± 1.5 years old. Figure 5(a) shows
the setup of the subjective assessment. The researchers stood upright at a
distance of 150 cm horizontally from the display. The size of the display
(LG, OLED65E9PJA) was 65 inches, and the height from the floor to the
display was 90 cm. The researchers compared the results obtained using the
conventional method M2d (Figure 5(b)) with the results obtained using our
method M3d (Figure 5(c)). Visualization images of each method were shown
on the display for 60 s each. We randomized the order of displaying the
visualization images generated by M2d and M3d. We asked the researchers
to choose the visualization images they felt would better directly facilitate
the comparison of gaze distributions among the subjects. The researchers
replied with one of the following answers: M2d, M3d, or neutral.

Result of the subjective assessment
Figure 6 shows the result of the subjective assessment. Five eye-tracking
researchers chose the conventional method, two chose neutral, and nine chose
our method. Our method M3d obtained the highest results. Some researchers
chose the conventional method M2d because they were familiar with the 2D
heatmaps on still images, which made it easy to identify the body parts
focused on by gaze for each subject. In contrast, some researchers chose our
method M3d because the body parts such as the hands, torso, and legs are
completely aligned for all subjects, so it is easy to compare the differences
in the gaze distributions without having to pay attention to the body poses
and shapes. From these results, we confirmed that our method M3d enables
eye-tracking researchers to more directly compare differences in the gaze
distributions, even when the body poses and shapes are different, than the
conventional method M2d.
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Fig. 6. Result of the subjective assessment comparing visualization images generated
using the proposed and conventional methods.

4 Conclusions

We proposed a method of superimposing 3D heatmaps on the surface of a neutral
human body model to visualize where the gazes of observers focus when they
look at subjects in still images. For the visualization images obtained using our
method, we confirmed in a subjective assessment that eye-tracking researchers
could directly compare the gaze distributions, even when the body poses and
shapes differed among subjects.

In future work, we will expand the evaluation to consider the case in which
various shape characteristics, such as the weight, of the subjects in still images
change. We also plan to consider the error estimation due to the influence of
gender and clothing according to the neutral human body model. Furthermore,
we intend to develop a method for calculating the vertex attention probability
when there are multiple subjects in a single still image.
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