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Abstract—We propose a method of counting pear flower buds
from sequential images acquired from a worm’s-eye view by a
driven camera system. When only flower buds are detected at
each time point, the problem of duplicate counting of the same
flower buds may occur. Thus, in addition to the detection at each
time point, our method identifies flower buds through keypoint
matching for sequential image pairs and then counts the flower
buds. Experimental results show that our method has less error
in counting flower buds compared with using only a detector.

Index Terms—Pear flower buds, counting, worm’s-eye view,
detection, keypoint matching

I. INTRODUCTION

The social background of agriculture faces the problems of
an increase in physical labor, a decrease in the number of
agricultural workers, and an increase in the amount of work.
Smart agriculture, in which advanced information technology
is introduced into daily operations, is expected to overcome
these problems. In smart agriculture, crop growth informa-
tion is acquired from driving devices equipped with cameras
and analyzed using artificial intelligence technologies. High-
yielding and high-quality conditions are expected to be found
by comparing the growth information currently acquired with
that accumulated previously. Additionally, smart agriculture is
expected to optimize crop production control, reduce physical
labor, secure new farmers, and reduce labor.

In Tottori Prefecture, the introduction of smart agriculture
is being promoted to farms targeting pears, a specialty of the
prefecture. We here consider the acquisition of crop growth
information on pear trees as an initial step in introducing
smart agriculture. Specifically, information on the growth of
pear trees includes information on flower buds, fruit, branches,
and leaves. For example, the number of pears in summer [1],
[2] has been counted for smart agriculture. In contrast, we
consider how to count the number of pear flower buds in early
spring for smart agriculture in the present study. Obtaining the
number of pear flower buds in early spring and comparing it
with the number of fruit shipped at the beginning of fall can
help farmers manage production. If a large volume of this
growth information is accumulated, there is the possibility to
predict the yield of pears accurately in the future.

We here propose a method of counting flower buds from
sequential images of pear trees acquired using a camera system
driven on the ground. Our method finds the regions of pear
flower buds from worm’s-eye view images using detectors
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Fig. 1. Overview of our method.

and then counts the number of pear flower buds through
keypoint matching of the image pairs. In our experiments, we
used a single-shot multibox detector (SSD) [3] and a you-
only-look-once (YOLO) detector [4]. Furthermore, we used
SuperPoint [5] and SuperGlue [6] for keypoint matching. The
experiments confirmed that the use of our method reduces
the error in counting flower buds compared with the simple
method of using only detectors.

II. OUR METHOD
A. Overview

We describe a method of counting flower buds adopting a
detector and keypoint matching. Figure 1 shows an overview
of our method. First, sequential image pairs are acquired in
step S1. An image pair comprises an image /; and image [y
acquired consecutively in a time series. The camera system
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Fig. 2. Examples of the same flower buds between images. These buds appear
in the shared areas of the image pairs.

is driven on the ground and acquires sequential images from
the ground by looking up at the branches of a pear tree.
In step S2, our method detects candidate regions of flower
buds from I; and I;; using a detector. However, it is noted
that conducting only step S2 generates duplicate-counting
problems. The ground of a pear farm is bumpy, and even if
the time interval between image acquisitions is constant, the
distance interval is not always constant. Thus, camera fields
of view often overlap between time points. Examples of this
overlapping are shown in Fig. 2. In the following, we refer
to the overlapping parts of an image pair of I; and [ as
the shared areas. If only the detection of flower buds for I,
and I, is adopted, there can be no determination of whether
the detected flower buds are the same, which results in the
duplicate counting of flower buds at the two time points.
Flower buds being the same means that they appear in the
two shared areas of the image pair. We here consider solving
the problem of duplicate counting in steps S3 and S4 of our
method. In step S3, our method identifies the candidate regions
of the same flower buds detected from the shared areas in I;
and I; 1. Our method extracts keypoints within the candidate
regions to identify the candidate regions. If the keypoints
extracted from the candidate regions of I; correspond to the
keypoints extracted from the candidate region of [;;, our
method determines that they are identical flower buds. In step
S4, our method excludes the same flower buds from I;y;
through keypoint matching of the candidate regions. After
this exclusion process, the remaining candidate regions in the
image pair I; and I;;; are counted as the number of flower
buds.

B. Detection of flower buds

Object detection is a method of finding specific object
regions in images. Recent technological advances in object
detection have led to the use of deep learning techniques, such
as in [3], [4]. These techniques have the advantage of detecting
objects more accurately than methods without deep learning
techniques.

Even with deep-learning-based detection methods, there are
issues that we must consider. If the detection target is small
compared with the image size, the detection accuracy is low.
As an example, we consider the case that an SSD [3] is used
as a detector. The SSD300, one of the SSD implementations,
internally reduces the size of input images I; and ;4 to 300 x
300 pixels. In this case, the bounding box of the candidate
flower bud region in the resized input images in SSD300 is
small. Specifically, the median size of the resized bounding
box of a flower bud is 9 x 13 pixels. Thus, the resized bounding
box is small, making it difficult to detect candidate regions of
flower buds.

In this paper, to improve the accuracy of detecting flower
bud candidate regions, we add a method of dividing the input
images I; and Iy into equal parcels and applying them to
SSD. These images are divided equally into B parcels of
I’(b = 1,...,B), and If“(b = 1,...,B). Inside SSD300,
input images I{ and I? ' 1 are resized to 300 x 300 pixels. The
bounding box of flower buds after the resizing of I? and I? 1
is approximately B times as large as that of the original I; and
I;y;. By dividing I; and I;;; equally, the bounding box of
the candidate region after resizing is enlarged, which mitigates
the issue of candidate regions not being detected.

C. Keypoint matching of candidate regions of flower buds

Keypoint matching is a method of extracting local descrip-
tors representing features around keypoints such as corner
points from an image pair and identifying the same local
descriptors for the images. There are several methods for
keypoint matching. In this paper, we use SuperPoint [5] for
extracting local descriptors and SuperGlue [6] for identifying
the local descriptors.

SuperPoint is a method of extracting the local descriptors
of keypoints from images with a deep neural network. Within
SuperPoint, the input image is resized to 1600 x 1067 pixels.
The median size of the bounding box of the candidate flower
bud region is then 48 x 48 pixels. The image size after resizing
is sufficient to extract the local descriptors. SuperPoint uses
I; and I,;; as the original input images. After extracting
local descriptors from I; and I;y; adopting SuperPoint, the
same local descriptors for these images are identified adopting
SuperGlue. SuperGlue is a deep neural-based method that
performs identification by finding the corresponding local de-
scriptors in an image pair and rejecting the non-corresponding
local descriptors.

We suppose that the identification results obtained adopting
SuperGlue are used directly. In this case, candidate and non-
candidate regions are occasionally misidentified. We make an
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Fig. 3. We used a camera system driven along a path in the pear farm for
image acquisition.

improvement that identifies only within the detected candidate
regions to avoid this issue.

III. EXPERIMENTS
A. Dataset

We used sequential images acquired on a pear farm of
Fukube-Cho, Tottori, Tottori Prefecture, Japan. Figure 3(a)
shows our camera system. This camera system comprises a
camera (Canon EOS8000D), camera stabilizer (DJI Ronin-
SC), and dolly. We considered using a drone to acquire images,
but strong spring winds in Fukube-Cho made it impossible
to acquire the images stably, and we thus used a camera
system that looked upward at the branches from the ground.
Figure 3(b) shows the pear trees planted on the pear farm
and the paths of the camera system. Pear trees were planted
at equal spatial intervals. We acquired the sequential images
of the pear flower buds along the path indicated by the red
arrow. Figure 3(c) shows the path of the camera system from
a bird’s-eye view. We used a path that was passable for the
camera system. The sequential images were acquired from
10:28 AM to 4:39 PM on April 3, 2020. Pear leaves grow
quickly and the images were thus acquired on a single day
so that the additional growth of leaves would not obscure
flower buds. The number of worm’s-eye view images was 550,
and the image size was 6000 x 4000 pixels. A total of 7684
bounding boxes of flower buds were labeled manually. We
present histograms in Fig. 4 to visualize the frequency of the
height and width of the bounding boxes. The median width
and height of the bounding box were 181 and 180 pixels,
respectively.

B. Basic performance

We evaluated whether our method is effective in prevent-
ing the duplicate counting of flower buds. The methods of
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Fig. 4. Histograms of the width and height of the bounding boxes of the pear
flower buds (manually labeled).

TABLE 1
ACCURACY IN COUNTING PEAR FLOWER BUDS USING EACH OF THE
METHODS C1, C2, O1 AND O2. WE PRESENT THE PREDICTED NUMBER OF
PEAR FLOWER BUDS AND THE ERROR RELATIVE TO THE CORRECT VALUE.

Method Prediction  Error
C1 (SSD) 1006 231
C> (YOLO) 1082 307
O1 (SSD+SuperPoint+SuperGlue) 755 20
O3 (YOLO+SuperPoint+SuperGlue) 832 57

evaluation are described below.

e C7 (SSD): Comparative method 1. We used only the
SSD [3].

e C3 (YOLO): Comparative method 2. We used only the
YOLO detector [4].

e O1 (SSD+SuperPoint+SuperGlue): Our method 1. We
used the SSD [3] to find flower bud regions in step S2. We
then used SuperPoint [5] and SuperGlue [6] to identify
the same flower buds in step S3.

e Oz (YOLO+SuperPoint+SuperGlue): Our method 2. We
used the YOLO detector [4] to find flower bud regions in
step S2. We then used SuperPoint [5] and SuperGlue [6]
to identify the same flower buds in step S3.

Four-hundred images were used in detector training and 100
images in detector validation. The number of image divisions
described in Sec. II-B was set at B=8. The number of epochs
in training of the SSD was set at 50 and the reliability at 0.4.
The number of epochs in training of the YOLO detector was
set at 90 and the reliability at 0.3. We selected YOLOv5x!
from several YOLO models. In SuperPoint, the maximum
number of keypoints was set at 3072, and the threshold for
keypoint extraction was set at 0.0001.

We describe an index for evaluating the accuracy of count-
ing flower buds. In obtaining the correct number of flower
buds, we counted the buds manually to ensure no overlaps
of flower buds between sequential images. We predicted the
number of flower buds using each method. The absolute
difference between the correct number of flower buds and the
predicted number of flower buds was taken as the error.

Table I gives the accuracy in counting pear flower buds
using each of the methods C7, Cs, O1, and O,. We evaluated
the accuracy using 25 image pairs not used to train or validate

Uhttps://github.com/ultralytics/yolov5
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Fig. 5. Visualization of identifying the same flower buds in step S3 of our
method O7. (Red: candidate regions of pear flower buds, Yellow: regions of
the same flower buds, Blue: keypoints).

the detector of candidate flower bud regions. The number of
flower buds was counted manually for the 25 image pairs,
resulting in a correct number of 775 flower buds. We compared
the accuracy between methods with the same base detector in
the following. The error for C'y was 231, and the error for O,
was 20. The error for C5 was 307, and the error for O, was
57. The errors of O7 and Oy were less than those of C; and
(5. Furthermore, the error for O; was smaller than that for
O5. These results confirm that our method has less error than
the simple method of using only detectors.

C. Visualization of identifying the same flower buds

We visualize the results of identifying the same flower buds
in sequential images in step S3 of our method O, in Fig. 5. The
accuracy of O; used in this figure is that of O; in Table I. In
Fig. 5(a), I, is the image acquired immediately after the branch
entered the field of view. In Iy, in addition to branches
and flower buds in I;, other branches and flower buds come
into view. We see that the candidate regions are successfully
identified because the yellow boxes correspond between the
shared areas in the images. In Fig. 5(b), I; is an image of
branches and flower buds acquired from directly below the
pear tree. In the sequential images, many flower buds are in
the field of view. We see that even when the number of flower

TABLE II
ACCURACY WITH AND WITHOUT DIVIDING THE IMAGE EQUALLY INTO
PARCELS IN OUR METHOD O1.

Image division Prediction  Error
Without (B = 1) 133 642
With (B = 8) 755 20

buds in image pair (b) is larger than that in image pair (a), the
candidate regions are still successfully identified. In Fig. 5(c),
the sequential images were acquired in the evening, and the
sky is thus darker than the sky in the images in (a) and (b).
We see that candidate regions are successfully identified even
in the evening when the sun was setting.

D. Effect of dividing the image equally into parcels

We conducted an experiment to confirm whether dividing
the image equally into parcels as described in Sec. II-B is
effective for our method. Table II shows the accuracy of our
method O; with image division (B = 8) and without image
division (B = 1). The error of O; with image division is
less than that of O; without image division. We confirm that
detection using our method with image division is effective for
sequential images of worm’s-eye view acquired by the camera
system.

IV. CONCLUSIONS

We proposed a method of detecting candidate regions of
pear flower buds from sequential images of worm’s-eye view
using a detector. Candidate regions of the same flower buds are
identified through keypoint matching, and the flower buds are
counted. Experiments confirmed that our method prevents du-
plicate counting and reduces the error in counting pear flower
buds. In the experiments, false negatives in detecting candidate
flower bud regions were more frequent than false positives and
keypoint matching errors. In future work, we intend to develop
a method of reducing false negatives for flower buds with a
small bounding box. This work was partially supported by
Research Center for Sustainable Science, Tottori University.
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