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Abstract. Two-dimensional (2D) image registration is a conventional
technique for simultaneously performing object recognition and pose es-
timation tasks. Deep neural-based 2D image registration techniques re-
cently emerged and achieved high performance in both tasks. However,
these 2D image registration techniques are not designed to perform the
segmentation task, which is one of the significant image processing tech-
niques. Here, we consider introducing a deep segmentation network mod-
ule into the framework of the 2D image registration. Especially, we con-
sider training the segmentation network module with no supervision cost
of mask images. To do this, we exploit the idea of the canonical plane,
which is one surface observed mainly for each object in an image. We
train the weakly supervised segmentation network module to perform
the segmentation task of the canonical plane in the query and target
images using the outputs of the 2D image registration. Experimental re-
sults show that our network can accurately perform the segmentation
task without mask image supervision.

Keywords: Segmentation · Image registration · Supervision.

1 Introduction

There is a strong demand for solutions in warehouses to automate the picking
process of planar objects such as product boxes and books to solve the labor
shortage in logistics. Recently, some object-picking systems using cameras and
robot arms [5, 10] have been developed as one of the automation solutions. These
systems automatically infer foreground masks, class labels and pose parameters
of target objects using image processing technologies to control robot arms to
pick objects up. To do this, we need to perform the following tasks accurately;
segmentation, object recognition and pose estimation.

We consider 2D image registration techniques, which are conventional tech-
niques for simultaneously performing object recognition and pose estimation
tasks. These techniques detect interest points from images containing the same
object, extract local descriptors from the surroundings of the interest points, and
search the correspondences between the interest points using the descriptors. The



2 S. Yoneda et al.

Target
object

Canonical
plane

Fig. 1: Examples of the canonical plane in the target object. The canonical plane
is one surface that is observed mainly for each object.

popular 2D image registration techniques are Scale-Invariant Feature Transform
(SIFT) [11] + Random Sample Consensus (RANSAC) [7] and Oriented FAST
and Rotated BRIEF (ORB) [13] + RANSAC. Recently, deep neural-based 2D
image registration techniques, such as SuperPoint [6] + SuperGlue [14], have
emerged and achieved high performance in object recognition and pose estima-
tion tasks. However, these 2D image registration techniques [6, 7, 11, 13, 14] do
not consider how to perform the segmentation task though they consider how to
perform object recognition and pose estimation tasks.

Here, we propose a deep segmentation network module that is easily attached
to the framework of the 2D image registration under the condition that mask
image supervision is not required. Before explaining our segmentation network
module, we consider a simple idea to use a fully supervised segmentation network
in addition to using a 2D image registration technique. This idea requires col-
lecting large datasets with mask image supervision, which is generally costly, to
obtain high segmentation accuracy. Instead of using a fully supervised segmen-
tation network, we introduce a weakly supervised segmentation network module
into the framework of the 2D image registration. Experimental results show that
our segmentation network module with no cost of mask supervision accurately
performed the segmentation task with the help of pose parameters estimated by
the 2D image registration technique.

2 Our deep segmentation network with 2D image
registration

2.1 Overview

Our goal is to attach the deep segmentation network module to the framework
of 2D image registration without explicit mask image supervision. To train the
weakly supervised segmentation network module, we exploit the idea of the
canonical plane, which has been introduced in [15]. The canonical plane is one
surface that is observed mainly for each object. Figure 1 shows examples of the
canonical plane when a camera acquires a rectangular or planar object image.
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Fig. 2: Overview of our network for the training process. We introduce our deep
segmentation network module s(), which does not require mask image supervi-
sion, into the framework of the 2D image registration. To predict the region of
the canonical plane in the query image Iq, we train the segmentation network
module s() by reducing the mask loss Lm computed between the query mask

image Îq
m and the target mask image Ît

m.

We consider training the segmentation network module that predicts the region
of the canonical plane in a query image. Our network performs the segmenta-
tion task using the output of 2D image registration between the query and target
images belonging to the same canonical plane. Based on this idea, our training
process can achieve no mask image supervision for the segmentation task. Fig-
ure 2 shows the overview of our network that trains the segmentation task of
the canonical plane with the 2D image registration. We describe the detail of
our overall network below.

In advance, we prepare the image pair as the training sample, where the pair
consists of the query image Iq and target image It. Note that the query Iq and
the target It belong to the same canonical plane of the same object class (but
with a different pose), which are used for the deep segmentation network module
and the 2D image registration module.

Our overall network consists of the deep segmentation network module s(),
the 2D image registration module r(), and the target binarization module b().

First, the segmentation network module s() predicts a query mask image Îq
m from

a query Iq by using the encoder layer, the merging layer, and the decoder layer.
The encoder layer e() extracts the feature e(Iq) from the query Iq. The merging
layer m() combines the feature e(Iq) with the feature p(Iq), which is extracted in
the 2D image registration module r(). We will explain this registration module r()
later. In the merging layer m(), we consider that the feature p(Iq) highlights the
informative region of the feature e(Iq) representing the canonical plane. The
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decoder layer d() predicts the query mask Îq
m using the feature m(e(Iq),p(Iq))

combined in the merging layer.
Second, the 2D image registration module r() estimates the relative pose

change from the target It to the query Iq. According to [14, 15], this pose change

can be represented by a homography transformation matrix Ĥq between the re-
gions of the target It and the query Iq belonging to the same canonical plane. For
this module r(), we simply use the pre-trained SuperPoint [6] + SuperGlue [14]
network. SuperPoint detects interest points and extracts deep local descriptors
from the query Iq and the target It using a convolutional network. SuperGlue
searches the correspondences between the interest points of the query Iq and
those of the target It using a graph neural network and a matching layer. Ad-
ditionally, the 2D image registration module r() uses the least squares method

to estimate the homography matrix Ĥq using the correspondences searched by
SuperGlue.

Third, the target binarization module b() predicts a target mask image Ît
m

from a target It by using the following processes. This module transforms the
target It using the homography matrix Ĥq estimated in the 2D image regis-
tration module r() so that the pose parameter of the canonical plane in the
target It is the same as that of the query Iq. Next, this module binarizes pixel
values of the canonical plane to 1 and those of other regions to 0. To check the
similarity between the query mask Îq

m and the target mask Ît
m, we compute the

mask loss Lm in our network. By reducing the mask loss Lm, we can train the
segmentation network module s() without the mask image supervision.

2.2 Training image pairs

Our network uses the query Iq and the target It as the training image pair
⟨Iq, It⟩. The query Iq contains a rectangular or planar object with a random
pose. We do not place any particular restrictions on the background of the
query Iq. In contrast, we assume that the pixel values of the background region
outside the canonical plane in the target It are filled with 0, i. e., the background
condition of the target It is black. We also assume that the target It contains
only one canonical plane, which appears in the pair’s query Iq. We consider that
it is reasonable to acquire the target It with the black background condition.
Specifically, the target It can be acquired by placing the object parallel to the
black floor and using a camera set up so that its optical axis passes through the
object’s center of gravity. Each of Fig. 3(a) and (b) show the examples of the
target It representing the canonical planes for rectangular and planar objects.
It is sufficient to acquire six targets per one rectangular object and two targets
per one planar object for the training process.

2.3 Deep segmentation network module

We describe the details of the training process of the deep segmentation net-
work module s(). As described in Section 2.1, this module s() performs the



Deep Segmentation network without mask supervision 5

Object

Target
𝑰𝑡

Target
𝑰𝑡Object

(a) Rectangular (b) Planar

Fig. 3: Examples of the target It representing the canonical plane for rectangular
and planar objects.

segmentation task with the help of the feature p(Iq) extracted in the 2D image
registration module r(). Hence, we first describe the pose estimation task using

the module r(). This module estimates the homography matrix Ĥq from the
target It to the query Iq as

Ĥq = r(Iq, It; p(Iq)). (1)

In the module r(), SuperPoint [6] internally extracts the feature p(Iq) using
a convolutional network. After performing the pose estimation task, the deep
segmentation network module s() predicts the query mask Îq

m from the query Iq

using p(Iq) as

Îq
m = s(Iq,p(Iq)) = d(m(e(Iq),p(Iq))). (2)

As described in Section 2.1, the module s() uses the encoder layer e(), the merg-
ing layer m(), and the decoder layer d(). The encoder layer e() extracts the fea-
ture e(Iq) that represents the region of the canonical plane in the query Iq using
convolutional layers. The merging layer m() first combines the feature e(Iq) with
the feature p(Iq) extracted by the SuperPoint network. Then, the merging layer
reduces the dimensionality of the combined feature for fitting the dimensionality
of the feature e(Iq). The decoder layer d() predicts the query mask Îq

m from
the feature m(e(Iq),p(Iq)) combined in the merging layer m() using deconvo-
lutional layers. After performing the segmentation task, the target binarization
module b() predicts the target mask Ît

m from the target It as

Ît
m = t(It, Ĥq). (3)

This module transforms the target It using the homography matrix Ĥq esti-
mated in the 2D image registration module r() and binarize the pixel value of
the canonical plane to 1 and that of the other region to 0. Finally, the mask
loss Lm is computed using the squared L2 norm between the query mask Îq

m

and the target mask Ît
m as

Lm = ||Îq
m − Ît

m||22. (4)
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Fig. 4: Overview of our network for the inference process. The deep segmentation
network module s() predicts the input mask image Îi

m of the input image Ii

using the feature p(Ii) extracted in the 2D image registration module r(). The
recognition module outputs the pair of the selected target image It

∗ and the
homography transformation matrix Ĥi

∗.

This loss Lm returns a small value when the query mask Îq
m and the target

mask Ît
m are similar, i. e. when the prediction of the query mask Îq

m is close to
a correct solution.

2.4 Inference

Figure 4 shows the overview of our network for the inference process. Our in-
ference process consists of the deep segmentation network module s() and the
recognition module. We initially perform the object recognition and pose es-
timation tasks for an input image Ii using the recognition module and then
perform the segmentation task using our module s(). We store a set of target
images T = {It

j}Nj=1 in advance. Note that each target It
j stored in the set T

contains only one canonical plane belonging to a target object.
We describe the detail of the recognition module. The 2D image registration

module r() in the recognition module estimates the homography transformation

matrix Ĥi
j for transforming the image from the target It

j to the input Ii. We

store a pair of the target It
j and the homography matrix Ĥi

j in the set of the
pairsH for allN target images. Here, the recognition module performs the object
recognition task for the input Ii as

⟨It
∗, Ĥ

i
∗⟩ = argmax

⟨It
j
,Ĥi

j
⟩∈H

k(Ii, It
j , Ĥ

i
j). (5)

This equation means that a pair of a target image It
∗ and a homography transfor-

mation matrix Ĥi
∗ is selected from the set H, where the target It

∗ has the largest
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(a) YCB dataset (b) APC dataset

(c) ARC dataset

Fig. 5: Target objects from YCB dataset, APC dataset, and ARC dataset used
in our experiments. The color frame indicates the type of the object shape (Red:
rectangular, Orange: planar).

number of interest points corresponding to the input Ii. The function k() counts
the number of interest points in the correspondence between the input Ii and
the target It

j . The object recognition task is done by assigning the object class
of the selected target It

∗. The pose estimation task is done by outputting the
selected homography matrix Ĥi

∗ as the relative pose change from the selected
target It

∗ to the input Ii.
In the inference process, we directly use our deep segmentation network mod-

ule s() of Section 2.3 trained with no cost of mask image supervision and can
perform the segmentation task efficiently. The segmentation network module s()

predicts the input mask Îi
m of the input Ii using the feature p(Ii) extracted in

the 2D image registration module r() after the recognition module performs the
object recognition and pose estimation tasks.

3 Experiments

3.1 Dataset

We evaluated the segmentation accuracy, recognition accuracy, and pose esti-
mation error of our network on a dataset mixed with three popular datasets
for the picking process scenario; YCB dataset [3], APC dataset [12], and ARC
dataset [2]. We used 17 rectangular objects and 10 planar objects: six rectan-
gular objects and four planar objects in YCB dataset as shown in Fig. 5(a), six
rectangular objects and one planar object in APC dataset as shown in Fig. 5(b)
and five rectangular objects and five planar objects in ARC dataset as shown
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(a) Tray background condition

(b) Clutter background condition

Fig. 6: Examples of the background condition used in our experiments.

in Fig. 5(c). Each object in these datasets consisted of a 3D mesh model and a
texture map.

We generated the query Iq by applying 3D rendering with three degrees
of freedom (3-DOF) rotation, translation, and scaling to the objects randomly.
The 3-DOF rotation angles were sampled in the range of [−30, 30] degrees. The
translation parameters were sampled in the range of [−150, 150] pixels. And, the
scale parameters were sampled in the range of [0.8, 1.2].

We used two different background conditions: tray background as shown in
Fig. 6(a) and clutter background as shown in Fig. 6(b). In the tray background
condition, we used red, blue, yellow, and green trays. In the clutter background
condition, we randomly placed 28 objects in Household Objects for Pose Esti-
mation (HOPE) datasets3. Note that the objects contained in HOPE dataset
were completely different from the objects in the datasets of Fig. 5. We show
examples of the query Iq in the tray background condition of Fig. 7(a) and the
clutter background condition of Fig. 7(b).

We acquired the target It using the manner described in Section 2.2. We
used 30, 000 pairs of the query Iq and the target It for the training process.
We also used 3, 000 inputs Ii for the inference process. Note that we completely
separated the pose parameters of the inputs Ii from those of the training image
pairs ⟨Iq, It⟩. For the inference process, the set of target images T included all
canonical planes of the 27 objects contained in the dataset of Fig. 5. The number
of images contained in T was 122, i.e., 17 × 6 + 10 × 2, because a rectangular
object contains six canonical planes and a planar object contains two canonical
planes. The size of each image was fixed to 600 × 600 pixels. In the 2D image
registration module r(), we used the size of the input images at 600×600 pixels.
In the deep segmentation network module s(), we resize the input images to
100× 100 pixels.

3 https://github.com/swtyree/hope-dataset



Deep Segmentation network without mask supervision 9

(a) Tray background condition

(b) Clutter background condition

Fig. 7: Examples of the query Iq used in our experiments.

3.2 Implementation and performance metrics

The encoder layer e() of the deep segmentation network module s() consisted
of one pooling layer and four convolutional layers. The merging layer m() con-
sisted of one upsampling layer for the features p(Iq) extracted in the 2D image
registration module r(), one concatenate layer, and one convolutional layer for
dimensionality reduction. The decoder layer d() consisted of two deconvolutional
layers, one convolutional layer, and one upsampling layer. We simply used the
pre-trained SuperPoint [6] + SuperGlue [14] network that are officially available.
We set the hyperparameters of SuperPoint and SuperGlue to default provided
values. We trained our network using stochastic gradient descent with a learning
rate of 10 and a momentum parameter of 0.9 for 100 epochs.

We used the following three metrics for performance evaluation. The intersec-
tion over union (IoU) between the predicted mask image and the ground truth
mask image was used to evaluate the segmentation accuracy. The correct match
rate was used to evaluate the recognition accuracy. The Frobenius norm of the
difference between the estimated homography matrix and the ground truth ho-
mography matrix was used to evaluate the pose estimation error. Note that we
computed the pose estimation error only when the object class of the input Ii

is the same as that of the target It
∗ selected by the recognition module. We used

the average performance over the three runs, each with different training-testing
splits.
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Table 1: Performance of our network and SuperPoint [6] + SuperGlue [14].
Seg. Acc. Rec. Acc. Pose Err.

Tray Clutter Tray Clutter Tray Clutter

SuperPoint+SuperGlue n/a n/a 0.81±0.01 0.75±0.01 0.09±0.01 0.22±0.01
Ours 0.82±0.01 0.75±0.01 0.81±0.01 0.75±0.01 0.09±0.01 0.22±0.01

3.3 Comparison with SuperPoint [6] + SuperGlue [14]

We first evaluated the effectiveness of our network by comparing with origi-
nal SuperPoint [6] + SuperGlue [14]. Our network performs the segmentation,
object recognition, and pose estimation tasks, while the original SuperPoint +
SuperGlue performs only the object recognition and pose estimation tasks. The
results are shown in Table 1. The recognition accuracy and pose estimation er-
ror were consistent between the original and our network because we used the
same SuperPoint + SuperGlue network. We confirmed that our network could
perform the segmentation task in addition to the object recognition and pose es-
timation tasks by introducing the weakly supervised deep segmentation network
module s() into the framework of the 2D image registration.

We show qualitative results of the deep segmentation network module s()
in Fig. 8 of the tray background condition, and those in Fig. 9 of the clutter
background condition. In each row of these figures (from left to right), we show
the input Ii for the inference process, the segmentation region masked by the
input mask Îi

m of s(), the transformation region converted by the homography

matrix Ĥi
∗ of the recognition module, and the target It

∗ of the recognition mod-
ule. Note that we replaced pixel values of the background region from 0 to 255
in these figures. When generating the transformation region, we used the inverse
matrix of Ĥi

∗. We see that the deep segmentation network module s() accurately
works because the appearances of the object between the transformation region
and the target It

∗ are similar.

3.4 Comparison with existing segmentation networks

To analyze the effectiveness of the deep segmentation network module s(), we
compare our network with fully and weakly supervised segmentation networks.
As fully supervised segmentation networks, we used Feature Pyramid Network
(FPN) [9], DeepLabv3+ [4], and Unet++ [17]. As weakly supervised segmenta-
tion networks, we used Pixel-level Semantic Affinity (PSA) [1], Self-supervised
Equivariant Attention Mechanism (SEAM) [16], and Puzzle-CAM [8]. Note that
the existing segmentation networks do not consider performing the pose estima-
tion task, and PSA does not even consider performing the object recognition
task. We applied fine-tuning to the pre-trained networks of existing segmenta-
tion techniques. We used the default provided hyper-parameters. The results are
shown in Table 2. Our network performs inferior to any fully supervised seg-
mentation networks in both segmentation accuracy and recognition accuracy.
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Fig. 8: Qualitative results of the deep segmentation network module s() in tray
background condition. We see that the appearance of the transformation region
is similar to that of the target It

∗.
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Fig. 9: Qualitative results of the deep segmentation network module s() in clutter
background condition. We see that the appearance of the transformation region
is similar to that of the target It

∗.
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Table 2: Performance of our network and existing segmentation networks.
Mask Seg. Acc. Rec. Acc. Pose Err.

supervision Tray Clutter Tray Clutter Tray Clutter

FPN [9] w/ 0.98±0.01 0.98±0.01 0.99±0.01 0.99±0.01 n/a n/a
DeepLabv3+ [4] w/ 0.98±0.01 0.98±0.02 0.99±0.01 0.99±0.01 n/a n/a
Unet++ [17] w/ 0.99±0.02 0.99±0.01 0.99±0.01 0.99±0.01 n/a n/a

PSA [1] w/o 0.46±0.01 0.34±0.05 - - n/a n/a
SEAM [16] w/o 0.16±0.04 0.18±0.01 0.64±0.08 0.56±0.07 n/a n/a
Puzzle-CAM [8] w/o 0.33±0.07 0.06±0.02 0.45±0.04 0.15±0.09 n/a n/a
Ours w/o 0.82±0.01 0.75±0.01 0.81±0.01 0.75±0.01 0.09±0.01 0.22±0.01

Table 3: Performance of our network with and without features p(Iq) extracted
in the 2D image registration module r().

Seg. Acc. Rec. Acc. Pose Err.
Tray Clutter Tray Clutter Tray Clutter

Ours (w/o p(Iq)) 0.80±0.02 0.74±0.01 0.81±0.01 0.75±0.01 0.09±0.01 0.22±0.01
Ours (w/ p(Iq)) 0.82±0.01 0.75±0.01 0.81±0.01 0.75±0.01 0.09±0.01 0.22±0.01

In contrast, our network outperforms all weakly supervised segmentation net-
works in both segmentation accuracy and recognition accuracy. Furthermore,
our network was the only one that was able to obtain pose estimation outputs.
We believe that our deep segmentation network module is advantageous for not
requiring mask image supervision.

3.5 Performance without features extracted in 2D image
registration module

As described in Section 2.1, our network uses the features p(Iq) extracted in the
2D image registration module r() to help the segmentation task by combining
p(Iq) with the features e(Iq) in the merging layer m(). To analyze the impact
of the features p(Iq), we evaluated the performance of our network without the
use of p(Iq). The results are shown in Table 3. Comparing our network with and
without p(Iq), the segmentation accuracy of our network with it was slightly
better. We consider that the use of p(Iq) with e(Iq) has a little bit impact on
the performance of our network.

3.6 Comparison with the other 2D image registration technique

We evaluated the performance of our network using ORB [13] instead of Super-
Point [6] in the 2D image registration module r(). Our network used RANSAC [7]
instead of SuperGlue to search the correspondences of local descriptors between
the interest points. Because ORB extracts local descriptors not using deep neural
networks, we did not use the features p(Iq) for ORB. We used the default pro-
vided hyperparameters for ORB. The results are shown in Table 4. We confirmed
that our network using SuperPoint is superior to that using ORB in terms of
the segmentation accuracy, recognition accuracy, and pose estimation error. We
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Table 4: Comparison with the other 2D image registration technique.
Seg. Acc. Rec. Acc. Pose Err.

Tray Clutter Tray Clutter Tray Clutter

Ours (ORB [13]) 0.68±0.01 0.57±0.01 0.56±0.01 0.35±0.01 1.35±0.01 2.90±0.01
Ours (SuperPoint [6]) 0.82±0.01 0.75±0.01 0.81±0.01 0.75±0.01 0.09±0.01 0.22±0.01

consider that SuperPoint is better than ORB for introducing our segmentation
network module into the framework of the 2D image registration.

4 Conclusions

We proposed a deep segmentation network module without mask image super-
vision, which is easily attached to the framework of the 2D image registration.
For this purpose, we trained the segmentation network module with the help
of 2D image registration between the query and target images belonging to the
same canonical plane. We demonstrated that our network accurately performs
the segmentation, not requiring the cost of mask image supervision. In future
work, we expand to evaluate the performance of our network on datasets of ob-
jects with various shapes. We intend to develop a network for handling more
complex transformations than homography transformation. We would like to
thank Mr. Tokachi SHIRAHATA for his cooperation in our experiments.
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