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ABSTRACT

Accurate object recognition and pose estimation models are essential for practical applications of
robot arms, such as picking products on a shelf. Training such a model often requires a large-scale
dataset with qualified labels for both object classes and pose parameters, and collecting accurate pose
labels is particularly costly. A recent paper [28] proposed a triplet learning framework for joint object
recognition and pose estimation without explicit pose labels by learning a spatial transformer network
to estimate the pose difference of an input image from an anchor image depicting the same object
in a reference pose. However, our analysis suggests that the pose estimation accuracy is severely
degraded for input images with large pose differences. To address this problem, we propose a new
learning approach called multiple-anchor triplet learning. The basic idea is to give dense reference
poses by preparing multiple anchors so that there is at least one anchor image having a small pose
difference to the input image. Our multiple-anchor triplet learning is an extension of the standard
single-anchor triplet learning to the multiple-anchor case. Inspired by the idea of multiple instance
learning, we introduce a selection layer that automatically chooses the best anchor for each input
image and allows the network to be trained end-to-end to minimize triplet-based losses. Experiments
with three benchmark datasets in product picking scenarios demonstrate that our method significantly
outperforms existing methods in both object recognition and pose estimation accuracy.

1. Introduction

Real-world applications of robot arms, e.g., picking a product
on a shelf, often require accurate object recognition and pose
estimation. Many vision-based techniques have been developed
to equip these functions targeting to realistic use cases such as
warehouse automation [11, 17].

Following the success of deep learning in various image pro-
cessing tasks, it has also become mainstream in both object
recognition and pose estimation. Given the correlation between
the two tasks, recent methods have been designed to perform
both tasks simultaneously [27, 4]. These existing methods per-
form well when a sufficient amount of training data associated
with accurate object class and pose parameter labels are avail-
able. However, collecting such a large-scale dataset with qual-
ified labels is generally costly. It is even more so for pose pa-

e-mail: nishiyama@tottori-u.ac.jp (Masashi Nishiyama)

rameters, due to the nature of the need for fine numerical labels.
In this work, we aim to develop an efficient approach to learn-
ing a network for joint object recognition and pose estimation
using a training dataset with no explicit pose parameter labels
but with only object class labels.

A recent method [28] proposed a joint object recognition
and pose estimation model that can be learned without explicit
pose parameter labels, by combining the ideas of triplet learn-
ing [29, 24] and spatial transformer networks (STNs) [15]. The
triplet learning and STN are typically used to improve object
recognition accuracy. Triplet learning minimizes the feature
distance between an anchor image (called anchor) and a pos-
itive image (called positive) of the same class as the anchor,
and maximizes that between the anchor and a negative image
(called negative) of a different class. Meanwhile, the original
use of STN [15] is to apply a geometric transformation (e.g.,
2D affine transformation) to the input image purely to improve
recognition accuracy. Instead, [28] proposes integrating both



2

into a unified framework to estimate the relative pose difference
from the anchor to the positive. Considering that many products
handled by the robot arm are locally planar (e.g., boxed foods),
[28] trains the STN to match the appearance of a “dominant
plane” of the object (called canonical plane) of the anchor and
that of the positive within the triplet learning framework.

This elegant idea allows for pose estimation of nearly pla-
nar objects without labeling the pose parameters, and can also
improve the accuracy of object recognition. However, our anal-
ysis (given later in Sec. 3) found that the training of the STN
could fall to a poor local minimum depending on the choice of
the anchor, resulting in severe degradation of pose estimation
accuracy, especially for images with large pose differences.

In this paper, we propose a multiple-anchor triplet learning
method to address this problem. Unlike the standard triple
learning framework that uses only a single anchor, our approach
allows us to have more than one anchor per triplet, giving
denser reference poses to prevent pose estimation from being
trapped in poor local minima. Moreover, we introduce a selec-
tion layer that automatically selects the best anchor from among
candidate anchors to enable end-to-end learning with multiple-
anchor triplet data. Experimental results with three publicly
available datasets for object recognition in product picking sce-
narios show that our method reduces the pose estimation error
while improving object recognition accuracy.

2. Related work

2.1. Object Recognition

Existing methods for object recognition can be categorized
into a model-based approach and a data-driven approach. The
model-based approach uses a classification model (classifier)
to categorize an input image into a set of known object classes.
The classifier is trained to minimize some loss function, e.g.,
softmax cross-entropy between prediction and the ground truth
class label. A convolutional neural network such as ResNet [14]
is typically used as the classifier. The model-based approach
provides highly accurate classification as long as the possible
object classes are prespecified. Utilizing this advantage of the
model-based approach has been the mainstream for more ad-
vanced tasks such as object detection [19, 21].

The data-driven approach aims at learning distance metrics in
a feature space and solving the classification task in the nearest
neighbor manner. A feature extraction network is trained so
that it minimizes the intra-class distances and maximizes the
inter-class distances. Modern methods use convolutional neural
networks for feature extraction, such as the siamese network [5,
1] and triplet network [29, 24]. More sophisticated versions
have also been proposed in recent years [10, 31].

In this work, we consider the data-driven approach for ob-
ject recognition. In a product sorting task in a warehouse, novel
classes of objects can be frequently added to the gallery. In
such a case, the model-based approach requires frequent re-
training of the model, which is often time consuming, whereas
the data-driven approach circumvents this. Our network is de-
signed to extract a deep feature for an input image and is trained
in the triplet learning framework. Moreover, the network is also

trained so that it can estimate the pose of the object in the image
by leveraging the output of the intermediate STN module.

2.2. Pose Estimation

Existing methods for pose estimation can be categorized into
a keypoint-based approach and a learning-based approach. The
keypoint-based approach is designed to extract discriminative
three-dimensional points and match their local features in a
point cloud space [8, 23]. The existing methods perform well
when a sufficient number of points representing the shape of the
object have been acquired. However, it is known that the per-
formance decreases for objects with less discriminative shapes.

The learning-based approach is typically designed to match
the appearance of the object in an RGB image space, which
has attracted much attention recently [27, 4, 6]. Accurate pose
estimation is possible when a large number of training sam-
ples with pose parameter labels are available. However, assign-
ing accurate full three-dimensional pose parameters to each ob-
ject is costly [4, 6]. Assigning ground truth three-dimensional
bounding boxes to each object is still hard work [27].

Some recent studies have explored weakly supervised ap-
proaches to reduce the labeling cost, which is the most rele-
vant type of methods to ours. The majority of the methods per-
form joint object recognition and pose estimation [16, 26, 18].
Kanezaki et al. [16] assumed that the object pose is captured
by multiple views of objects and estimate the object category
and pose using multiple images in the test stage. Sundermeyer
et al. [26] and Li et al. [18] used three-dimensional models of
objects for training to learn their shapes.

Unlike the existing methods, we instead focus on accom-
plishing this task without making such assumptions. We aim
to estimate the parameters of linear transformations of pose
changes. The network can be trained using only RGB images
without requiring explicit pose labels. Furthermore, our model
can estimate the object class and pose together from a single
RGB image, which can be applicable to diverse robot arm sys-
tems in practical scenarios. As mentioned earlier, our method is
based on [28]. However, [28] has a drawback that the pose esti-
mation accuracy is severely reduced for images with large pose
variations. In this paper, we address this problem by proposing
a novel multiple-anchor triplet learning method.

3. Preliminary and Analysis

Before explaining the proposed method, we first intro-
duce [28] which is the background framework of the proposed
method. We also show our analysis to reveal that the pose esti-
mation accuracy by [28] is degraded for an input image with a
large pose difference from the anchor.

3.1. Overview of [28]

The overview of the network proposed in [28] is shown in
Fig. 1(a). It mainly consists of two major trainable parts: the
feature extraction network c( ) and the STN module s( ). As
in the triplet learning framework [29, 24], it has three streams
for the anchor, positive, and negative, and the parameters of c( )
and s( ) are shared over all the three streams. Note that the STN
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Fig. 1: Overview of the network architectures of (a) [28] and (b) ours. s( ) synthesizes an image by removing pose changes using the STN in terms of the homography
transformation. c( ) extracts a feature using a convolutional neural network. Unlike (a) [28], (b) ours uses the selection layer to handle multiple anchors.

module s( ) is only set in the positive and negative streams, right
after the input layer.

Suppose a collection of training triplets are available, where
each consists of an anchor Ia, positive Ip, and negative In. Ip

contains the same object as the anchor Ia (but with a different
pose), while In does a different object. Every image is assumed
to be pre-processed to contain only a single foreground object,
due to the fact that background models are often available in
warehouse automation as described in [32], and thus can readily
be removed and segmented by a standard foreground segmen-
tation method. Given such a dataset, c( ) and s( ) are trained
by minimizing the distance between the features of the anchor
c(Ia) and the “transformed” positive c(s(Ip)) (by the STN mod-
ule), while maximizing that between the features of the anchor
c(Ia) and the transformed negative c(s(In)). The resulting fea-
tures are expected to be consistent with the object classes.

At the same time, the STN module s( ) is trained to estimate
the relative pose of the positive Ip from the anchor Ia. Typical
objects considered in warehouse automation scenarios can be
well represented by a small number of “canonical planes,” and
an image of such an object is likely to capture at least one of
these planes. Based on this idea, [28] first converts the full 3D
pose estimation problem into a problem of 2D transformation

estimation of the canonical plane, which can be directly han-
dled by the STN module. Suppose an anchor depicts an object
in a reference pose with respect to a canonical plane, and the
same anchor is used for all the triplets for the same plane of the
same object. In this case, the pose of the object in the positive
can be predicted by estimating a 2D homography transforma-
tion matrix Ĥ from the anchor to the positive. The following
appearance loss La is introduced to enforce the positive to be
always transformed to the anchor by the STN module s( ).

La(Ia, Ip) = ||Ia − s(Ip)||1. (1)

The loss returns a small value when Ia and Ip are similar after
the transformation s( ) is applied. The minimization can be per-
formed together with the feature learning in the triplet learning
framework, without explicit pose parameter labels.

3.2. Analysis

We found that the pose estimation accuracy by this
method [28] decreases rapidly when the pose difference be-
tween the positive Ip and the anchor Ia is large. This is because
changes in appearance due to rotation often involve a certain
level of ambiguity, leading to poor local minima for training
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Fig. 2: Local minima of La with respect to in-plane rotations. Other than the
global optimum at 0◦, La has multiple poor local minima at ±180◦.

the STN module s( ) using the appearance loss La. To be spe-
cific, we show in Fig. 2 the value of La when various in-plane
rotations are applied to a book image. As can be seen in the ex-
ample, when the image is rotated by 180◦, the resulting image
looks highly similar to its original (i.e., 0◦). That suggests that,
if the in-plane rotation angle of a positive Ip from the anchor Ia

is outside of [−90, 90] degrees, the appearance loss minimiza-
tion is likely to be trapped at the points displaced by ±180◦.
Consequently, the pose estimation result may often deteriorate
for an input image with a large pose difference from the anchor
Ia. To tackle this issue, we propose a multiple-anchor extension
of the standard single-anchor triplet learning.

4. Multiple-anchor Triplet Learning

The idea behind our approach is to create a situation in which
there is at least one anchor having a close angle for any positive
by preparing multiple anchors with different rotation angles.

4.1. Multiple-anchor Triplet for Pose Estimation

Our triplet tuple consists of a set of N anchors denoted by
A = {Ia

i }
N
i=1, one positive Ip, and one negative In. The set of the

anchorsA is prepared to represent the same canonical plane of
an object from different rotation angles. While the simplest op-
tion is to use N images taken from N random viewpoints asA,
we adopted a more systematic and effective method. Specifi-
cally, we set up the camera so that its optical axis is perpendic-
ular to the floor and place the object parallel to the floor surface.
The optical axis of the camera is set so that it passes through the
object’s center of gravity. We then acquire N images for each
canonical plane at a regular interval. As discussed in Sec. 5.7,
this method gives better object recognition and pose estimation
performance than the random acquisition case.

4.2. Appearance Loss for Multiple-anchor Case

Given the “bag of anchors”A, inspired by the idea of multi-
ple instance learning [2], we define our multiple-anchor version
of the appearance loss LA as:

LA(A, Ip) = min
Ia
i ∈A

La(Ia
i , I

p) = min
Ia
i ∈A
||Ia

i − s(Ip)||1. (2)

By this, only the anchor image closest to the positive con-
tributes to the final loss value, which mitigates the ambiguity
over the angles.

4.3. Selection Layer

Our loss function Eq. 2 can be decomposed into two pro-
cesses as:

Ia
∗ = argmin

Ia
i ∈A

La(Ia
i , I

p). (3)

LA(A, Ip) = La(Ia
∗, I

p). (4)

This means that once the best anchor Ia
∗ in terms of the original

(single-anchor version of) appearance loss La is chosen from
A according to Eq. 3, the multiple-anchor version of the ap-
pearance loss LA(A, Ip) turns into the original appearance loss
La(Ia

∗, I
p).

Based on this fact, our multiple-anchor triplet learning can be
implemented by just introducing a selection layer into the orig-
inal triplet network. Our network architecture overall can be
illustrated as in Fig. 1(b). It is the same as the original network
Fig. 1(a) except for the selection layer that determines the best
anchor according to Eq. 3. For training of the network, the gra-
dient is computed by using only the Ia

∗ chosen by the selection
layer, and the STN module can also be updated based on the
homography transformation matrix Ĥ from the selected anchor
Ia
∗ to the given positive Ip.

4.4. Training

Our network is trained to minimize the total loss function that
can be expressed as

L(IA, Ip, In) = λLA(A, Ip) + Lt(Ia
∗, I

p, In) (5)
= λLa(Ia

∗, I
p) + Lt(Ia

∗, I
p, In), (6)

where Lt is the standard triplet loss term which is for learning
features for object recognition, and λ is a hyperparameter. The
triplet loss Lt is defined as:

Lt(Ia
∗, I

p, In) = max(||c(Ia
∗) − c(s(Ip))||22−

||c(Ia
∗) − c(s(In))||22 + m, 0),

(7)

where m is the margin. Note that the triplet loss term is com-
puted only for the best anchor Ia

∗ selected by the selection layer,
hence the standard form [29, 24] can be directly used. Lt returns
a smaller value when the features of the selected anchor Ia

∗ and
Ip are closer as well as those of Ia

∗ and In are farther.

4.5. Inference

Following [28], our method performs object recognition in
a nearest neighbor classification manner. For each object, we
store the set of N anchor images A of its canonical planes and
their features in a database as the reference set. Given an input
(query) image Iq, our method first extracts its feature using the
trained network, i.e., the anchor branch in Fig. 1(b), as c(s(Iq)).
Object recognition is done by finding the closest anchor im-
age Ia

∗ from the database in terms of the feature distance, i.e.,
||c(Ia

∗) − c(s(Iq))||, and assigning the object class of the selected
anchor image Ia

∗. The homography transformation matrix Ĥ
output by the STN module gives the estimated pose of the input
Iq from the chosen anchor Ia

∗.
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4.6. Extension to Other Types of Losses
Our multiple-anchor idea can be extended to several other

types of loss functions. Here, we consider extending the noise
contrastive estimation (NCE) loss to its multiple-anchor ver-
sion. Many studies [9, 25, 30] have reported the effectiveness
of NCE loss in various tasks, e.g., self-supervised learning and
metric learning. Suppose given {Ip, Ia

∗, I
n
1, . . . , I

n
M} with Ip as

the positive, Ia
∗ as the anchor chosen by the selection layer from

multiple anchors, and In
j ( j = 1, . . . ,M) as the negatives, the

total loss function is expressed as:

L(Ip, Ia
∗, I

n
1, . . . , I

n
M) = λLa(Ip, Ia

∗)+LN(Ip, Ia
∗, I

n
1, . . . , I

n
M), (8)

where La is the selected appearance loss of Eq. 4, λ is a hyper-
parameter, and LN is the NCE loss. LN is defined as:

LN(Ip, Ia
∗, I

n
1, . . . , I

n
M)

= −E
log

exp(sim(Ip, Ia
∗)/τ)

exp(sim(Ip, Ia
∗)/τ) +

∑M
j=1 exp(sim(Ip, In

j )/τ)

 ,
(9)

where sim( ) is a cosine similarity function and τ is a tempera-
ture parameter. In our experiments in Sec. 5.10, we also evalu-
ate the multiple-anchor NCE loss.

5. Experiments

5.1. Datasets
We evaluated object recognition accuracy and pose estima-

tion error of our method by using three major datasets for prod-
uct picking in warehouse scenarios: ARC dataset [3], YCB
dataset [7], and APC dataset [22]. We used RGB images ren-
dered from the object models available in these datasets so that
we can have the ground truth pose parameters for evaluating
pose estimation performance.

ARC dataset. Fig. 3(a) shows the examples of the images con-
tained in ARC dataset. It contains 34 distinct objects: 19 are
planar, nine are rectangular, and six are cylindrical. Follow-
ing [28], the number of canonical planes are set to 2, 6, and 10,
respectively. The resulting number of the anchor sets are 152,
i.e., 19 × 2 + 9 × 6 + 6 × 10.

YCB dataset. Fig. 3(b) shows the examples of the images in-
cluded in YCB dataset. The objects in YCB dataset have rel-
atively complicated shapes, making it more challenging than
ARC dataset. It contains 34 objects: seven are planar, 11 are
rectangular, and 16 are cylindrical. We prepare the same num-
ber of the canonical planes for each object type as ARC dataset,
leading to 240 sets of the anchors, i.e., 7× 2 + 11× 6 + 16× 10.

APC dataset. Fig. 3(c) shows the examples of the images in-
cluded in APC dataset. It contains 17 objects: six are pla-
nar, eight are rectangular, and three are cylindrical. We pre-
pare the same number of the canonical planes for each object
type as ARC dataset, leading to 90 sets of the anchors, i.e.,
6 × 2 + 8 × 6 + 3 × 10.

We generated positives for triplet learning by applying a ran-
dom homography matrix to the same object as in the anchor,

(a) ARC dataset (b) YCB dataset

(c) APC dataset

Fig. 3: Object images from ARC dataset, YCB dataset, and APC dataset used
in our experiments. The color frame indicates the type of the object shape
(Orange: planar, Red: rectangular, Blue: cylindrical).

and negatives by applying another random homography matrix
to different objects. The parameters of the homography ma-
trix are sampled in the range of [−25, 25] pixels for transla-
tion, [−180, 180] degrees for rotation, [0.8, 1.2] for scale, and
[−0.5, 0.5] for the remaining parameters. We generated a set of
anchors for each canonical plane by rotating it by 360/N de-
grees (We explain N in Sec. 4.1). For training, we used 20, 000
triplets for ARC dataset, 25, 000 for YCB dataset, and 10, 000
for APC dataset. The test sets were prepared so that they were
disjoint from the training sets. Specifically, we stored 152 × N
anchors (i.e., reference images) for ARC dataset, 240 × N for
YCB dataset, and 90 × N for APC dataset in the reference
database. We randomly generated 1, 000 test input samples for
each dataset in the same manner as the training samples. The
size of each image was fixed to 100 × 100.

5.2. Experimental Setup

Implementation Details. Our feature extraction network is
consisted of two convolution layers, one max pooling layer,
and one global max pooling layer. The output feature is 128-
dimensional. In the STN, we used a regressor with two convo-
lution layers, two max pooling layers, and two fully connected
layers. We trained the network using stochastic gradient de-
scent with a learning rate of 0.01 and a momentum parameter
of 0.9 for 100 epochs.

Performance Measures. We used the correct match rate to
evaluate the object recognition accuracy and the Frobenius
norm between the estimated homography matrix and the ground
truth homography matrix to evaluate the pose estimation error.
Note that we computed the pose estimation error if and only if
the object classes of the test input samples were correctly rec-
ognized as those of the reference images. We report the average
performance over the nine runs, each with the different training-
testing splits.
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Fig. 4: Performance for different number of anchors N. (a) and (b) Results on
ARC dataset. (c) and (d) Results on YCB dataset. (e) and (f) Results on APC
datast.

5.3. Comparison with [28]

We first demonstrate the effectiveness of our multiple-anchor
triplet learning by comparing with [28] based on the single-
anchor triplet learning. We consistently set the balancing hyper-
parameter λ = 10 in Eq. 5 as suggested in [28]. The results are
shown in Table 1(a) and (f). We see that our method (f) outper-
formed [28] (a) in both recognition accuracy and pose estima-
tion error with significant margins on all the datasets. It proved
the strong advantage of our multiple-anchor triple learning in
both object recognition and pose estimation. For further analy-
sis, we evaluated the performance of our method while chang-
ing the number of anchors N for N = 1, 2, 4, 6, 9. Note that
N = 1 corresponds to [28]. The results are shown in Fig. 4. The
results suggest that the performance of multiple-anchor cases
(N > 1) tend to outperform the single-anchor version (N = 1),
which further emphasizes the effectiveness of our idea of us-
ing multiple anchors. We found that the larger N does not al-
ways improve performance. This may be because the number of
training samples used per anchor may be reduced as the number
of anchors grows.

Fig. 5 shows qualitative examples. We see that the images
transformed by [28] have different appearances as the corre-
sponding anchors. Meanwhile, those obtained by using our
method are close to the anchors, even for objects with relatively
complex contours (as the example in the second row) and in-
put images with large rotation angles from the anchors (as the
example in the third row). This clearly demonstrates that our

Transformed Input
Test Input Ours

Anchor
(reference)[19]

Fig. 5: Qualitative examples. In each row, from left to right, a test input image,
test input images transformed by the STN module trained by [28] and ours, and
the corresponding anchor (reference) image are shown, respectively.

multiple-anchor idea plays an important role in correctly esti-
mating the relative pose changes.

5.4. Comparison with Triplet Learning [29] and STN Classi-
fier [15]

We compared the performance of our method with that of
the standard triplet learning method (TL) [29]. We only evalu-
ated the object recognition accuracy because the standard triplet
network was unable to estimate object poses. The results are
shown in Table 1(b) and (f). Comparing the standard triplet
learning method (b) with our method (f), we see that our net-
work using the multiple-anchor triplet learning is superior to
the simple triplet network.

Next, we compared the performance of our method with that
of the original STN [15]. For a fair comparison, the existing
STN is constructed to have the same configuration as our net-
work. That is, it consists of one STN module, two convolution
layers, two max pooling layers, and two fully connected layers.
Instead of triplet-based learning, the baseline network is trained
with the cross-entropy loss. The results are shown in Table 1(c)
and (f). Comparing the original STN (c) with our method (f),
our approach of embedding an STN module in multiple-anchor
triplet learning is superior to the original STN.

5.5. Evaluation of Object Recognition using Local Descriptors

Object recognition using SIFT+RANSAC and Super-
Point+RANSAC, i.e., image registration using RANSAC [13]
with SIFT [20] local descriptors and SuperPoint [12] local de-
scriptors, has been a strong approach to joint object recogni-
tion and pose estimation. We thus compare our method with
them to analyze the superiority of our method. For SIFT fea-
ture extraction, we set the sigma of the Gaussian to 1.6, the
contrast threshold to 0.004, and the edge threshold to 1, 000.
For SuperPoint feature extraction, we set the radius of non-
maximum suppression to 4, the threshold of keypoints to 0.005,
and the maximum number of keypoints to 1024. The results are
shown in Table 1(d) and (e). Our method (f) outperforms both
SIFT+RANSAC (d) and SuperPoint+RANSAC (e) in terms of
object recognition accuracy while achieving comparable per-
formance in pose estimation.
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Table 1: Performance of our method and the existing methods.
ARC YCB APC

Rec. Acc. Pose Err. Rec. Acc. Pose Err. Rec. Acc. Pose Err.
(a) [28] (Single anchor, N = 1) 0.84±0.01 1.86±0.01 0.72±0.01 1.88±0.01 0.84±0.01 1.90±0.01
(b) TL [29] 0.87±0.01 n/a 0.78±0.01 n/a 0.88±0.01 n/a
(c) STN [15] 0.88±0.02 2.80±0.16 0.82±0.02 6.13±0.01 0.92±0.04 2.68±0.53
(d) SIFT+RANSAC [20, 13] 0.82±0.02 0.63±0.05 0.80±0.03 0.64±0.19 0.87±0.01 0.50±0.02
(e) SuperPoint+RANSAC [12, 13] 0.83±0.01 0.66±0.03 0.82±0.01 0.64±0.03 0.90±0.01 0.51±0.03
(f) Ours (Multiple anchors, λ = 10, N = 4) 0.93±0.01 0.66±0.01 0.84±0.01 0.60±0.01 0.93±0.01 0.46±0.01
(g) Ours (Multiple anchors, λ = 0, N = 4) 0.88±0.01 1.70±0.02 0.78±0.01 1.75±0.03 0.89±0.01 1.68±0.04
(h) Ours (Multiple anchors, Random position, λ = 10, N = 4) 0.87±0.01 1.64±0.01 0.74±0.01 1.65±0.01 0.91±0.01 1.59±0.01
(i) Ours (Multiple anchors, No STN module in negative, λ = 10, N = 4) 0.93±0.01 0.67±0.03 0.83±0.01 0.63±0.01 0.93±0.01 0.53±0.01
(j) Ours (Multiple anchors, NCE loss, λ = 10, N = 4) 0.94±0.01 0.67±0.02 0.89±0.01 0.61±0.02 0.97±0.01 0.52±0.02

(a) (b) (c)

Fig. 6: (a) Planar objects, (b) non-planar objects, and (c) examples of non-
planar objects from different views.

Table 2: Effect of planar objects and non-planar objects in YCB dataset.
Rec. Acc. Pose Err.

(a) Ours (Planar) 0.91±0.02 0.57±0.03
(b) [28] (Planar) 0.78±0.02 1.86±0.04
(c) Ours (Non-planar) 0.81±0.02 0.68±0.05
(d) [28] (Non-planar) 0.64±0.01 1.89±0.03

5.6. Performance without Appearance Loss
To further analyze the effectiveness of the appearance loss

using multiple anchors Eq. 5, we evaluate the case when we set
λ = 0. The results are shown in Table 1(g). Comparing the
method without appearance loss (g) with the method with it (f),
we confirm that our multiple-anchor version of the appearance
loss contributes to both increasing object recognition accuracy
and reducing the pose estimation error.

5.7. Comparison of Anchor Acquisition Methods
As described in Sec. 4.1, our method acquires anchor images

of canonical planes in the fixed camera setting. To analyze the
impact of the way to collect the anchors, we evaluated the per-
formance with anchors acquired from random camera positions.
The results when using the anchors from random position are
shown in Table 1(h). Comparing with the results when using
the fixed positions in (f), we confirm that the acquisition of rep-
resentative canonical planes is effective in terms of improving
the performance of object recognition and pose estimation.

5.8. Investigation of Effect of Non-planar Objects
We evaluated the performance of our method for planar ob-

jects and non-planar objects contained in YCB dataset. The
planar objects mean simple shapes, i.e., planar, rectangular,
and cylindrical, while non-planar objects mean complex shapes.
Specifically, non-planar objects consist of not only canonical
planes but also curved surfaces, projections, and concavities.

We divided YCB dataset into 11 planar objects in Fig. 6(a) and
23 non-planar objects in (b). Examples of non-planar objects
from different views are shown in (c). We used the same con-
figuration of Table 1(f) except the datasets. We compared the
performance between our method and [28].

The results for planar objects and non-planar objects in YCB
dataset are shown in Table 2. For planar objects, our method (a)
obtained higher performance than (b). For non-planar objects,
our method (c) also obtained higher performance than (d). We
believe that our multiple-anchor triple learning has the advan-
tage for both planar objects and non-planar objects. However,
the performance for the non-planar objects (c) is lower than
that for planar objects (a). We consider that this is the limi-
tation of our method because the homography estimation used
in the STN module cannot sufficiently represent the complexity
of the shape of non-planar objects. We need to develop further
a method for pose estimation of complex shaped objects.

5.9. Performance without STN Module in Negative Stream

We evaluated the case when the STN module is removed
from the negative stream of Fig. 1(b). We used the same con-
figuration of Table 1(f) except the use of the STN module of
the negative stream. The results without the STN module in the
negative stream are shown in Table 1(i) and the results with it
in (f). We see that the pose estimation error of (f) was slightly
improved compared with the one of (i) in all the datasets. We
consider that the STN module in the negative stream is mean-
ingful to reducing the pose estimation error.

5.10. Performance with Multiple-anchor NCE Loss

We evaluated the performance of our method when using the
multiple-anchor NCE loss LN instead of the triplet loss Lt. We
set M = 64, λ = 10, and τ = 0.07. The same structures of
the positive stream, the anchor stream, and the negative stream
illustrated in Fig. 1(b) were used. The number of anchors in the
selection layer was N = 4.

The results using NCE loss LN are shown in Table 1(j). Com-
paring with the results of Triplet loss Lt (f), we see that the
NCE loss increased the object recognition accuracy in all the
datasets. However, the NCE loss did not contribute to reduc-
ing the pose estimation error in APC dataset. We consider that
NCE loss is valuable in improving object recognition accuracy.
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6. Conclusions

We proposed a multiple-anchor triplet learning method for
joint object recognition and pose estimation without explicit
pose parameter labels. Aiming at avoiding the problem of
falling into poor local minima during pose estimation, our
method uses multiple anchors to enable finer pose estimation.
We showed that the proposed multiple-anchor triplet learning
can be readily implemented by introducing a simple selection
layer that determines the closest anchor to the positive image.
We demonstrated that our method outperformed several exist-
ing methods with significant performance gain.

In future work, we will further evaluate our method on
datasets of objects with various shapes and complex back-
grounds. We are planning to expand the appearance loss term to
metrics other than the L1 norm and develop a spatial transform
module that can handle more transformations than just planar
homography transformations.
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