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PAPER
Gender recognition using a gaze-guided self-attention mechanism
robust against background bias in training samples

Masashi NISHIYAMA†, Member, Michiko INOUE†, Nonmember, and Yoshio IWAI†, Member

SUMMARY We propose an attention mechanism in deep learning net-
works for gender recognition using the gaze distribution of human observers
when they judge the gender of people in pedestrian images. Prevalent atten-
tion mechanisms spatially compute the correlation among values of all cells
in an input feature map to calculate attention weights. If a large bias in the
background of pedestrian images (e.g., test samples and training samples
containing different backgrounds) is present, the attention weights learned
using the prevalent attention mechanisms are affected by the bias, which
in turn reduces the accuracy of gender recognition. To avoid this problem,
we incorporate an attention mechanism called gaze-guided self-attention
(GSA) that is inspired by human visual attention. Our method assigns spa-
tially suitable attention weights to each input feature map using the gaze
distribution of human observers. In particular, GSA yields promising results
even when using training samples with the background bias. The results
of experiments on publicly available datasets confirm that our GSA, using
the gaze distribution, is more accurate in gender recognition than currently
available attention-based methods in the case of background bias between
training and test samples.
key words: Gaze distribution, attention mechanism, convolutional neural
network, gender recognition, self-attention

1. Introduction

Gender recognition [1], [2] is a technology adopted to clas-
sify pedestrians as a woman or man on the basis of the
appearances of their whole-body regions in images. It of-
fers promise for use in a variety of applications; e.g., video
surveillance and marketing. Currently available methods
of gender recognition [3]–[5] use deep learning techniques,
which require the preparation of a large number of training
samples comprising pairs of pedestrian images and their su-
pervised gender labels. In general, these training samples are
manually collected, and this requires considerable time and
effort. It also involves identifying background bias not in-
tended by the collectors of the training samples, as described
in [6]. Background bias frequently occurs if pedestrian im-
ages are acquired at a specific location. Background bias
present in training samples is erroneously extracted as fea-
tures and reduces the accuracy of gender recognition. We
thus need to extract the essential characteristics of physical
appearance differences in the presence of background bias
in the training samples.

To explore ways of extracting informative features for
gender recognition from pedestrian images when using deep
learning networks, we consider here a case in which human
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observers view images of pedestrians to judge their gender.
The human observers can correctly judge the gender of peo-
ple in images regardless of any bias in the background. We
think this is the case because the observers do not see the
background in the images and are thus unaffected by bias in
the images when determining the gender. In addition, the
observers are likely to focus on the body of a person in the
images. Here, we aim to mimic the human visual attention
represented by the distribution of gaze locations, measured
when observers view pedestrian images. We introduce the
gaze distribution to the training process of a deep learning
network for gender recognition. The gaze distribution can
be used to extract features representing only true appearance
differences without incorrectly training for the background
features, even when background bias features heavily in the
training samples.

Researchers [7]–[12] have recently attempted to extract
informative features for classification tasks by incorporating
the gaze distribution (such as fixation and saccade), where
this distribution is measured when observers view images.
However, they have not considered the background bias of the
training samples. We think, nonetheless, that the use of the
gaze distribution can help solve the problem of background
bias. In particular, Nishiyama et al. [12] proposed a gender
recognition method using the gaze distribution for pedestrian
images. Their method involves measuring the distribution
of gaze locations when observers judge gender in pedestrian
images and then using the distribution in prepossessing to
extract discriminative features. However, their method uses
the gaze distribution only to preprocess for feature extraction
and does not introduce it to the end-to-end framework for
deep learning.

We consider using convolutional neural networks
(CNNs), which are representative algorithms of deep learn-
ing for pattern recognition tasks. Sattar et al. [13] proposed
a method of incorporating the gaze distribution into a CNN,
called gaze pooling (GP). This assigns uniform weights, as
guided by the gaze distribution, to cells in a feature map
entered into the pooling layer of the network. However, GP
cannot adaptively set the weights of the cells for each input
feature map when the appearances of pedestrians variously
change. Thus, we do not expect to sufficiently improve the
gender recognition accuracy using GP’s uniform weights.

To determine appropriate weights using the gaze distri-
bution for each input feature map, we focus on an attention
mechanism for the CNN. We develop an automatic adjust-
ment of the attention weights. To this end, we consider
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self-attention (SA) [14], which is a well-known attention
mechanism. If we simply use the available SA, its perfor-
mance is incorrectly affected by the presence of background
bias in the training samples. The problem, in which gen-
der recognition accuracy decreases, arises because the SA
straightforwardly uses spatial correlations among all cells in
a feature map to determine the weights of deep attention.
The same problem arises even when we use other existing
methods of attention mechanisms such as in [15], [16].

To solve this problem, we propose a novel method for
incorporating the gaze distribution into an attention mecha-
nism to adaptively compute the spatial attention weights of
each input feature map. We call the proposed method gaze-
guided self-attention (GSA). We conducted experiments on
gender recognition using publicly available CUHK and RAP
datasets to assess the accuracy of our GSA in comparison
with the prevalent existing methods. The results confirmed
that our method improves the accuracy of gender recogni-
tion on datasets with different background biases between
the training samples and test samples. The remainder of this
paper is organized as follows. Section 2 describes related
work, Section 3 describes the background bias, Section 4
describes the proposed attention mechanism that uses the
gaze distribution, and Section 5 presents the experimental
results. Our concluding remarks are given in Section 6.

2. Related work

Attention mechanisms have been widely used to improve the
performance of deep learning networks. In image recog-
nition tasks [17]–[19], attention mechanisms are designed
to assign large weights to cells that are informative in the
feature map of a deep learning network. To perform a per-
son re-identification task, Song et al. [20] proposed an at-
tention mechanism that is learned from pedestrian images
with body-masked images to extract discriminative features.
Furthermore, to simultaneously perform attribute recogni-
tion and person re-identification tasks, the attention mecha-
nisms [21], [22] are proposed to assign informative weights
using training samples with both attribute and ID labels.
However, prevalent methods [17]–[22] do not consider the
spatial relationship between the attention mechanisms and
gaze distribution.

Some recent methods [7], [8] do incorporate the gaze
distribution into the attention mechanism in deep learning.
For video captioning, Yu et al. [7] used the gaze distribution
as supervised labels to design a spatial attention mecha-
nism for deep learning. Qiao et al. [8] designed an atten-
tion mechanism for answering visual questions using an idea
similar to that proposed in [7]. The attention mechanisms
described in [7], [8] have been trained so that the spatial at-
tention weights are close to the gaze distribution observed
in humans. An idea in place of the attention mechanism
has also been proposed; it combines gaze distribution with
the feature extraction layer of a deep learning framework.
To summarize video contents, Wu et al. [9] used the gaze
distribution of locations preferred by users as a feature to

input signals of a deep network. To estimate the behavioral
scanpaths of the eyes, Yang et al. [23] introduced the gaze
distribution to inverse reinforcement learning. However, the
above methods [7]–[9], [21] are not designed for the gender
recognition task and thus cannot be easily used for this task.
Furthermore, these methods do not address the problem of
background bias in the training samples.

The gaze distribution has also been used in machine
learning techniques, instead of deep learning techniques, to
perform image recognition tasks. In assessing image qual-
ity, Xia et al. [10] estimated the graphlets of local regions
representing the order in which locations in a given image
were viewed. They used non-negative matrix factorization
to generate the graphlets. In classifying the attributes of im-
ages of fashion-related items, Murrugarra-Llerena et al. [11]
used the gaze distribution to select a discriminative region
in the preprocessing of a classifier. Furthermore, the gaze
distribution has been used in various applications of image
recognition. Xu et al. [24] showed that the use of the gaze
distribution helps in performing egocentric video summa-
rization tasks. Sugano et al. [25] estimated preferable im-
ages using gaze distributions. Karessli et al. [26] classified
objects using only gaze-related features without object labels
for zero-shot learning. However, these methods [10], [11],
[24]–[26] have not been used for the gender recognition task
in the presence of background bias. To solve the problem of
background bias in gender recognition, we design a method
of developing an attention mechanism in a deep learning
network that effectively uses the gaze distribution.

3. Background bias in training samples

To solve the problem caused by background bias, we need to
be aware of obstacles in the images when collecting training
samples for gender recognition. We discuss the case where
training samples showing a pedestrian belonging to one gen-
der class contain a particular obstacle in the background,
whereas training samples showing a pedestrian belonging to
the other gender class do not. For example, as shown in
Fig. 1, we assume that there is an obstacle in front of the
pedestrian in certain images. In these examples, the images
used as training samples featuring men also contain an ob-
stacle at the bottom, whereas those showing women do not
contain the obstacle. This case applies, for instance, to im-
ages acquired in places where many women or men are in the
vicinity of a certain camera (e.g., near a women’s cosmetics
counter or around the menswear section of a shop). In both
cases, parts of the bodies of some people are occluded in the
images.

We consider using training samples containing back-
ground bias when learning a CNN using the prevalent atten-
tion mechanisms. In this case, the attention layer mistakenly
learns the presence or absence of a specific obstacle as a
gender feature, rather than the differences in physical ap-
pearances in the pedestrians’ body regions. As an example,
if the network was learned using the training samples shown
in Fig. 1, a test sample featuring a woman with an obstacle
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Woman

Obstacle
Man

Fig. 1 Examples of background bias. We assume a scene in which an
obstacle is present in front of a man subject and one in which no obstacle
is present in front of a woman subject. In this case, the accuracy of gender
recognition decreases when using training samples containing background
bias. The subject in a test sample, featuring a woman with an obstacle in
front of her, was incorrectly classified as a man.

in front was incorrectly classified as featuring a man.
In general, avoiding this problem requires a large num-

ber of training samples containing various backgrounds for
both genders. When the background is clearly biased, we
can modify camera settings during sample collection. In
some cases, once the sample collection has been carried out,
unexpected bias may occur in the training samples after an-
alyzing the outputs of a gender classifier. In the worst case,
it is necessary to repeat the sample collection process. Be-
cause collecting the training samples is time consuming and
costly, researchers may sometimes need to contend with the
collected training samples even if they contain bias.

We consider how to extract the characteristics of gender
differences using training samples that have already been col-
lected. By applying segmentation [27]–[29] and background
subtraction [30]–[32], we can remove the background re-
gions containing bias. However, it is difficult to accurately
remove these regions with a limited number of training sam-
ples. Thus, instead of removing the background, we consider
ways of extracting discriminative features from pedestrians’
body regions. We develop a method for correctly classifying
gender using the spatial attention mechanism of a network
architecture that incorporates the gaze distribution.

4. Gaze-guided self-attention for gender recognition

4.1 Overview

We now summarize the prevalent SA [14], which is the basic
idea behind our proposed method. In the SA layer, when
computing an individual cell’s attention weight in the input
feature map, the system uses multiple cells with high corre-
lations. The use of correlations allows the SA to consider
the spatial relationship between neighboring cells and dis-
tant cells while computing the weight of the feature map.
However, the simple use of the SA leads to the result being

strongly affected by background bias in the training samples.
This is because all cells of the feature map containing re-
gions of both the body and background are directly used to
compute the spatial attention weights.

Our method, the GSA, explicitly incorporates a weight
computation using the gaze distribution in the spatial atten-
tion mechanism. We aim to mitigate the problem caused
by background bias in the training samples using the spatial
characteristics of the gaze distribution. Our GSA appropri-
ately computes the spatial attention weights for each feature
map corresponding to the body region. In the next section,
we describe the details of our method.

4.2 Algorithm of the proposed method

We represent by 𝒙∈R𝐶×𝐻×𝑊 a feature map entered into the
GSA layer. The number of channels of the feature map is
𝐶, the height of the map is 𝐻, and the width of the map is
𝑊 . The gaze distribution pre-measured for human observers
is represented by 𝒈. (We describe how to measure 𝒈 in
Section 4.3.) The size of 𝒈 is re-scaled to 𝐶×𝐻×𝑊 to fit the
vector to the size of 𝒙. Each cell at a certain height and width
in 𝒈 has the same value for different channels. We express
�̂�∈R𝐶×𝐻×𝑊 , a feature map generated by the GSA layer, as

�̂� = 𝛾 �̂� + 𝒈◦𝒙, (1)

where 𝛾 is a learnable coefficient and �̂�∈R𝐶×𝐻×𝑊 is a GSA
map. Note that the function ◦ represents the Hadamard
product that takes an element-by-element product of cells
between arrays of the same size. Figure 2 is an overview
of the procedure adopted to compute a GSA map �̂�. We
describe details on how to compute �̂� below.

The point-wise convolution is applied to 𝒙, where the
purpose is to change the number of channels and thus re-
duce the computational complexity. Here, 𝒙∈R𝐶×𝐻×𝑊 is
transformed into 𝒙∈R𝐶×𝑁 to simplify the computation of
the arrays. We compute 𝒒(𝒙) = W𝑞𝒙, 𝒌 (𝒙) = W𝑘𝒙,
and 𝒗(𝒙) = W𝑣𝒙. We represent the weights of the point-
wise convolution as W𝑞∈R𝐶

′×𝐶 (𝐶 ′ < 𝐶), W𝑘∈R𝐶
′×𝐶 , and

W𝑣∈R𝐶×𝐶 . As the training of our network progresses, W𝑞 ,
W𝑘 , and W𝑣 are updated. The size of 𝒒(𝒙) and 𝒌 (𝒙) is
R𝐶

′×𝑁 . The size of 𝒗(𝒙) is R𝐶×𝑁 .
Our GSA assigns weights to 𝒒(𝒙), 𝒌 (𝒙), and 𝒗(𝒙) using

the gaze distributions 𝒈∈R𝐶×𝑁 and 𝒈′∈R𝐶′×𝑁 as

�̂�(𝒙) = 𝒈′ ◦ 𝒒(𝒙), (2)
�̂� (𝒙) = 𝒈′ ◦ 𝒌 (𝒙), (3)
�̂�(𝒙) = 𝒈 ◦ 𝒗(𝒙), (4)

where 𝒈′ is an array in which the cell values are spatially
the same as those in 𝒈 and only the number of channels
is changed. The main contribution of our algorithm is the
incorporation of gaze distribution 𝒈 into the prevalent spatial
attention mechanism using Eq. (2), (3), and (4).

We then generate an array �̂�∈R𝑁×𝑁 as

�̂� = �̂�(𝒙)T �̂� (𝒙). (5)
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𝒒" 𝒙 = 𝒈′ ∘ 𝒒 𝒙𝒒 𝒙 = 𝐖!𝒙

𝒙 Gaze-guided self-attention
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Usage: 𝒚" = 𝛾𝒐" + 𝒈 ∘ 𝒙

Fig. 2 Overview of our method for computing the GSA map �̂�. We incorporate the gaze distribution
into the weight computation of spatial attention. Our GSA computes appropriate attention weights for
each feature map extracted from discriminative regions. We aim to mitigate the effect of background
bias in training samples using gaze distribution 𝒈.

+

Input
image

𝒈

𝒐$

GSA layer
Output:
Woman

or
man

𝒚$𝒙

FC layer

CNN

Gaze   
distribution

𝒈 ∘ 𝒙

Feature 
map GSA map

Fig. 3 Example of incorporating the GSA layer of our method into a
network for gender recognition.

The element 𝑠𝑖 𝑗 in the array �̂� indicates the spatial correla-
tion between the cells at locations 𝑖 and 𝑗 . We generate an
attention map �̂�∈R𝑁×𝑁 by normalizing �̂� as

𝛽 𝑗 ,𝑖 =
exp(𝑠𝑖 𝑗 )∑𝑁
𝑖=1 exp(𝑠𝑖 𝑗 )

. (6)

The element 𝛽 𝑗 ,𝑖 in array �̂� indicates the spatial correlation
between the cells at locations 𝑗 and 𝑖. Finally, our method
generates the GSA map �̂� using �̂�(𝒙) and �̂� as

�̂� = �̂�(𝒙) �̂�T
. (7)

Note that �̂�∈R𝐶×𝑁 is reshaped to �̂�∈R𝐶×𝐻×𝑊 when com-
puting Eq. (1).

Figure 3 shows an example of incorporating the GSA
layer from our proposed method into a network for gender
recognition. The GSA layer outputs a feature map �̂� from
Eq. (1) by computing the GSA map �̂� using gaze distribution
𝒈 and an input feature map 𝒙.

4.3 Measurement of the gaze distribution

We now describe the method of measuring gaze distribution
𝒈 when an observer views an image of a person to judge
his/her gender. We think that the recognition accuracy can
be improved if we measure the gaze distribution for each
training sample. However, the gaze measurement for a large

Woman

Man

Fig. 4 Examples of stimulus images presented to observers to determine
the gender of the subject during gaze measurement. We assume that the
stimulus images were approximately aligned with the body regions.

number of training samples is time consuming and costly. To
avoid this expense, we measure a representative gaze distri-
bution from a few stimulus images. In our experiments, the
gaze measurement was performed according to the proce-
dure described in [12]. The details of the gaze measurement
are described below.

To measure gaze locations, the observers were asked to
complete a gender recognition task on the stimulus images
while the locations of their gazes were recorded. We used
pedestrian images from the CUHK dataset, which is part of
the PETA dataset [33], as stimulus images. Figure 4 show
examples of the stimulus images. We posed 16 stimulus
images to each observer in our experiment. To control the
experimental conditions, the numbers of man and woman
subjects in the stimulus images were set equal. The pro-
portions of all body orientations of subjects in the stimulus
images (front, back, left, and right) were also equal. The
same person did not appear more than once in the stimulus
images. In addition, there was no specific object in the back-
ground of the pedestrian. The size of all stimulus images
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Participant A Participant Z

1. 

2. 

Gaze distribution 𝒈

+

Measure gaze distributions of participants
as they determine gender from stimulus images.

Compute the representative gaze distribution 
across observers and stimulus images.

Fig. 5 Overview of the measurement of the gaze distribution of the ob-
servers.

was 80 × 160 pixels.
Eighteen participants (nine men and nine women, aver-

age age of 22.6 ± 1.2 years) participated in the study. The
participants were seated 65 cm from the display in the ex-
periment. Each participant adjusted the height of the chair
to maintain a gaze level between 110 and 120 cm from the
ground. A 24-inch display (size of 53 × 30 cm and resolu-
tion of 1920 × 1080 pixels) was used to show the stimulus
images. The display was set on a table that was 74 cm high.
We used a GP3 gaze measurement device (Gazepoint HD),
which has a sampling rate of 150 fps. Its angular resolution
was between 0.5 and 1 degree. The stimulus image was en-
larged to 480 × 960 pixels on the display. To avoid center
bias [34] that causes the calculated gaze locations to con-
verge to the center of the display during measurement, the
stimulus images were set at random locations within a range
±720 pixels horizontally and a range ±60 pixels vertically
from the center of the display.

Figure 5 is an overview of the process of measuring the
gaze distribution of the participants as they performed the
gender identification task. To acquire the gaze distribution
of each participant, we presented randomly selected stim-
ulus images to the participant, each for 2 s. We repeated
this for each participant until all stimulus images had been
presented. We used only the gaze locations of the partici-
pants, which were output by the gaze measurement device
as fixations. We summed the locations of the fixations from
all the participants and all stimulus images to generate a rep-
resentative gaze distribution 𝒈. The range of values for each
cell in 𝒈 was normalized to (0, 1].

We checked the alignment using the average image com-
puted from all images of subjects in the CUHK dataset. Fig-
ure 6(a) shows the average images of the subjects. The black
circle at the top corresponds to the head region, the black
ellipse near the center of the image corresponds to the torso
region, and the light-gray part at the bottom of the image

(b)(a)

Fig. 6 Average images of people in the CUHK dataset (a) and gaze dis-
tribution 𝒈 measured for 18 participants and 16 stimulus images (b).

corresponds to the foot region. Figure 6(b) shows the repre-
sentative gaze distribution 𝒈measured for the 18 participants.
In the figure, the dark region in the gaze map represents the
most frequent gaze locations gathered from the observers.
We see that the participants mainly viewed the head regions
of the subjects in the stimulus images. This tendency was
identical to that reported in a past study [12]. We think that
regions with large values in gaze distribution 𝒈 contained
informative features because these regions were attended to
by the participants when judging gender. On the basis of
this observation, we assume that assigning large weights to
such regions is useful for a spatial attention mechanism in
deep learning networks. Note that the gaze locations of the
participants did not converge near regions of the feet of the
subjects in the stimulus images.

5. Experiments

5.1 Experimental conditions

We evaluated the accuracy of gender recognition using our
method on the CUHK dataset, which is part of the PETA
dataset [33]. We used images of people with and without
a background bias, as described in Section 3, where this
bias was created using an obstacle in the background of
the pedestrians. We chose the training samples T and test
samples P according to the condition

• T (Woman, Man with an obstacle),
• P (Woman with an obstacle, Man).

Figure 7 shows examples of the training samples and test
samples. There was no obstacle in front of women in the
images used as training samples, whereas an obstacle was
present in front of woman subjects in images used as test
samples. We assessed the degree to which the accuracy of
gender recognition was affected by the background bias in
the training samples and test samples.

The CUHK dataset in the original PETA dataset con-
tains some images of the same people with no person ID
labels associated with them. We did not allow the same sub-
ject to appear in images of people in the training samples and
the test samples. Attribute labels were used to identify im-
ages that could have featured the same person. The CUHK
dataset comprised 476 images of men without an obstacle
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Woman

Training samples (T)

Man

Test samples (P)

Woman Man

Fig. 7 Examples of the training samples T and test samples P used in our
evaluation of gender recognition performance on the CUHK dataset.

in front of them, 426 of men with an obstacle in front, 419
images of women without an obstacle in front of them, and
355 of women with an obstacle. The size of the images was
80 pixels (width) by 160 pixels (height).

We generated five test sets by randomly selecting sam-
ples from the CUHK dataset. Each training set comprised
images of 300 men and 300 women, and each test set com-
prised images of 50 men and 50 women. We made sure that
there was no overlap of images of the same person between
the training and test samples. The average and standard de-
viation of the accuracy of gender recognition was calculated
from the five sets of the test samples and training samples.

5.2 Comparison with prevalent existing methods

The proposed GSA was designed by taking advantage of
both the GP method and prevalent spatial attention mech-
anism methods. We thus expected the accuracy in terms
of gender recognition to be superior to that of any of the
original methods. To confirm this expectation, we assessed
the accuracy of gender recognition when using the following
methods.

• B1: We used a conventional CNN. A miniCNN [35]
with two convolution layers and two pooling layers was
used. The network excluding the GSA layer and gaze
distribution 𝒈, shown in Figure 3, was used.

• B2: We used the ResNet50 model with binary cross
entropy loss between target gender labels and predicted
output logits. We used part of the implementation pro-
vided by [36].

• GP: We used gaze pooling proposed by Sattar et al. [13].
The GP layer was added to the network of B1 between
the last pooling layer and the FC layer. The output of
the GP layer 𝒚 = 𝒈 ◦ 𝒙 was computed, where 𝒙 is an
input feature map and 𝒈 is the gaze distribution of size

Table 1 Accuracy (%) of gender recognition on the samples T and the
samples P of the CUHK dataset.

B1 MiniCNN [35] 28.8±11.6
B2 ResNet50 [36] 35.8±4.4
GP Gaze pooling [13] 56.0±1.9
SA Self-attention [14] 29.8±10.6
CBAM Convolutional block attention [15] 33.8±5.6
EA Efficient attention [16] 24.2±7.2
GSA Gaze-guided self-attention (ours) 64.2±4.6

128 × (10 × 5).
• SA: We used the self-attention method proposed by

Zhang et al. [14], which computes spatial attention
weights. The SA layer was added after the pooling
layer and placed at the end of the network of B1. The
output of the SA layer 𝒚 = 𝛾𝒐 + 𝒙 was computed, where
𝒐 is an SA map.

• CBAM: We used the convolutional block attention
module (CBAM) proposed by Woo et al. [15], which
computes not only spatial attention weights but also
channel attention weights. The CBAM was added after
the pooling layer and placed at the end of the network
of B1.

• EA: We used the efficient attention (EA) module pro-
posed by Shen et al. [16], the implementation of which
requires less memory and has a lower computational
cost while maintaining the accuracy of the spatial atten-
tion mechanism. The EA was added after the pooling
layer and placed at the end of the network of B1.

• GSA: We used our gaze-guided self-attention expressed
by Eq. (1) in the network shown in Fig. 3. The GSA
was added after the pooling layer and placed at the end
of the network of B1.

We set the number of epochs to 50 and the batch size to 64
during the training of the CNN. A stochastic gradient descent
method with momentum was used for optimization.

Table 1 shows the accuracy of gender recognition us-
ing the B1, B2, GP, SA, CBAM, EA, and GSA methods.
We confirmed that the accuracy of our GSA was superior to
those of B1 and B2. These baseline methods did not account
for the background bias and were thus strongly affected by it.
We also confirmed that the accuracy of our GSA was better
than that of GP, which also uses the gaze distribution. Fur-
thermore, the accuracy of our GSA was higher than those
of the SA, CBAM, and EA, which are variations of spa-
tial attention modules. We believe that the use of the gaze
distribution helps solve the problem of the prevalent spatial
attention mechanisms. Thus, the proposed method, by incor-
porating the gaze distribution into the attention mechanism,
can improve recognition accuracy of the gender of a subject
in an image even when the background biases of the training
and test samples are different.

We evaluated the gender recognition accuracy when
using the backbone network B2 instead of B1. Table 2 gives
the accuracy for GP, SA, CBAM, EA, and GSA methods.
We confirmed that the GSA method obtained better accuracy
compared with the other methods. However, it is seen that the
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Table 2 Accuracy (%) when using the backbone network B2 on the
samples T and the samples P of the CUHK dataset.

GP Gaze pooling [13] 42.6±1.2
SA Self-attention [14] 36.8±2.6
CBAM Convolutional block attention [15] 33.0±1.4
EA Efficient attention [16] 39.2±1.3
GSA Gaze-guided self-attention (ours) 46.2±1.7

accuracy of the B1 network with GSA was higher than that
of the B2 network by comparing Table 1 with Table 2. We
consider that the simple B1 network is suitable relative to the
rich B2 network when using the training samples containing
background bias.

5.3 Evaluation using training and test samples with/without
an obstacle

We evaluated the gender recognition accuracy using the
training and test samples with/without an obstacle in the
CUHK dataset. We chose the training samples T𝑘 and the
test samples P𝑘 according to condition 1

• T1 (Woman, Man),
• P1 (Woman with an obstacle, Man with an obstacle),

condition 2

• T2 (Woman with an obstacle, Man),
• P2 (Woman, Man with an obstacle),

and condition 3

• T3 (Woman, Man),
• P3 (Woman, Man).

All other experimental conditions except the training and test
samples were the same as those in Section 5.2.

Table 3 gives the accuracy of gender recognition of the
B1, B2, GP, SA, CBAM, EA, and GSA methods using the
training and test samples with/without an obstacle. When
using T1 and P1, the GSA method was more accurate than
the other methods. When using T2 and P2, the accuracy of
the GSA method was again better than that of the other meth-
ods. We believe that the gaze-guided attention mechanisms
are suitable for the training and test samples containing back-
ground bias. In contrast, when using T3 and P3, the GSA
method did not have the best performance. We consider that
the conventional spatial attention mechanisms of the SA and
EA methods are suitable for the training and test samples not
containing background bias.

5.4 Discussion of attention maps

Our method is robust against the background bias of the
training samples, whereas this bias is problematic for the
conventional SA method. The proposed method can also
assign adaptive spatial attention weights to features of the
images, whereas GP is incapable of this. We visualized the
arrays of the attention maps obtained using the compared
methods to highlight the superiority of our method. We
compared the following arrays:

Table 3 Accuracy (%) when using the training and test samples
with/without obstacles on the samples T𝑘 and the samples P𝑘 of the CUHK
dataset.

Training T1 T2 T3
Test P1 P2 P3
B1 74.8±1.2 24.6±6.2 86.2±1.3
B2 71.4±3.9 21.6±1.5 86.0±1.1
GP 76.0±1.1 53.4±2.6 85.2±1.5
SA 76.0±0.9 21.2±1.0 87.8±1.0
CBAM 73.2±2.0 31.8±3.1 81.2±1.2
EA 75.4±1.2 31.4±14.4 88.0±1.8
GSA 77.8±0.4 60.6±1.4 86.6±1.0

• the feature maps 𝒙 entered into the GP layer and the
arrays 𝒈◦𝒙 weighted by the gaze distribution, shown in
Fig. 8(a);

• the feature maps 𝒙 entered into the SA layer and the SA
maps 𝒐 shown in Fig. 8(b); and

• the feature maps 𝒙 entered into the GSA layer, the arrays
𝒈◦𝒙 weighted by the gaze distribution, and the GSA
maps �̂� shown in Fig. 8(c).

In the figure, the red regions represent large values and the
blue regions small values of the arrays. To visualize the
arrays, we averaged the values of all cells along the direction
of the channel. The size of the channel of each array for the
visualization was 𝐶 = 128, with a height 𝐻 = 10 and width
𝑊 = 5. We used test samples that had been incorrectly
classified by both the SA and GP methods but correctly
classified by our GSA.

The results in Fig. 8(a) show that the background bias
strongly affected the feature maps 𝒙 of the GP method. In
particular, the test samples featuring woman subjects re-
sponded strongly to the lower-right obstacle area. In the
arrays 𝒈◦𝒙 weighted by the gaze distribution, the effect of
the background was suppressed. However, the values of the
head regions of men in the images were close to those of the
women. The results of the prevalent SA method in Fig. 8(b)
show that the background bias strongly affected both the fea-
ture maps 𝒙 and SA maps 𝒐. Figure 8(c) shows that the
feature maps 𝒙 were also affected by background bias. The
effect of the background was suppressed in the arrays 𝒈◦𝒙.
However, the values of the head regions in the images of
men in 𝒈◦𝒙 were close to those of the head regions in the
images of women. Our GSA map �̂� took different values
near the head regions for each test sample. We think that
these different values of �̂� helped in classifying the contents
of the images correctly. Our method thus achieved a higher
accuracy of gender recognition by adding adaptive weights
�̂� to 𝒈◦𝒙 for each input feature map.

5.5 Evaluation of variations of our method

In the proposed method, the gaze distribution was incorpo-
rated into the SA mechanism using Eq. (1), but other varia-
tions are possible. We thus evaluated the accuracy of gender
recognition using variations of our method, and compared
them.

• GSA: Our method, �̂� = 𝛾 �̂� + 𝒈 ◦ 𝒙,
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(c) GSA

𝒙 𝒈 ∘ 𝒙 𝒐%	 𝒙 𝒈 ∘ 𝒙 𝒐%	

𝒙 𝒈 ∘ 𝒙 𝒙 𝒈 ∘ 𝒙Woman Man
(a) GP

𝒙 𝒐 𝒙 𝒐
(b) SA

Woman Man

High value

Low value

Fig. 8 Visualization of the arrays computed using different methods: GP, SA, and GSA. 𝒙 represents
an input feature map, 𝒈 the gaze distribution, 𝒐 the SA map, and �̂� the GSA map. To visualize the arrays,
we averaged the values of all cells in the direction of the channel.

• V1: Variation 1, �̂� = 𝛾𝒐 + 𝒈 ◦ 𝒙,
• V2: Variation 2, �̂� = 𝛾 �̂� + 𝒙,
• V3: Variation 3, �̂� = 𝛾1𝒐 + 𝛾2𝒈 + 𝒙,
• V4: Variation 4, �̂� = (1 − 𝒈) ◦ �̂� + 𝒈 ◦ 𝒙,
• SA: Existing method, 𝒚 = 𝛾𝒐 + 𝒙,

where �̂� is our GSA map, 𝒈 is the gaze distribution, and 𝒐 is
the map generated using the prevalent SA method. All other
experimental conditions except the computation of �̂� were
the same as those in Section 5.1.

Table 4 shows the accuracy of gender recognition using
V1 to V4, which are the variations of our proposed method.
The GSA in this table is identical to the results of 5.2. The
GSA obtained a higher recognition accuracy than all its vari-
ants. A comparison of the accuracy of SA and V1 makes
it clear that 𝒈 ◦ 𝒙 had substantially increased accuracy. A
comparison of the accuracy of SA and V2 shows that �̂� only
slightly improved the accuracy. When comparing the accu-
racy of V1 and V2, 𝒈 ◦ 𝒙 was found to have contributed to
increasing the accuracy more than �̂�. Note that the effect of
�̂� in GSA could not be ignored. We think that the synergistic
effect of �̂� and 𝒈 ◦ 𝒙 in our method improved the accuracy
of gender recognition in comparison with the other methods.
By contrast, no improvement in accuracy was noted in V3.
We checked the accuracy of V4 when the weighting manner
for the attention map �̂� was changed from GSA. V4 has better

Table 4 Accuracy (%) of gender recognition using V1 to V4, variations
of our proposed method, on the samples T and the samples P of the CUHK
dataset.

GSA �̂� = 𝛾�̂� + 𝒈 ◦ 𝒙 64.2±4.6
V1 �̂� = 𝛾𝒐 + 𝒈 ◦ 𝒙 58.4±5.8
V2 �̂� = 𝛾�̂� + 𝒙 35.6±6.4
V3 �̂� = 𝛾1𝒐 + 𝛾2𝒈 + 𝒙 23.4±6.1
V4 �̂� = (1 − 𝒈) ◦ �̂� + 𝒈 ◦ 𝒙 51.0±0.9
SA 𝒚 = 𝛾𝒐 + 𝒙 29.8±10.6

accuracy than SA but worse accuracy than GSA.

5.6 Comparison with the case in which body regions are
segmented

We evaluated the accuracy of proposed method for gender
recognition in the case when body regions had been seg-
mented before being entered as input images into a deep
learning network. We used Mask R-CNN [27] as the seg-
mentation technique. Figure 9 shows the training samples
T𝑚 and test samples P𝑚. The background obstacle that had
been present at the bottom of the images was removed. The
foot, which had been hidden by the obstacle, was not present
in these images. Some of the legs that had been visible in
the original images were removed. We used B1, B2, GP,
SA, CBAM, and EA described in Section 5.2 as the com-
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Man

Test samples (Pm)

Woman Man

Fig. 9 Examples of the training samples T𝑚 and test samples P𝑚 with
the segmented regions of pedestrian images.

parative methods. All other experimental conditions, except
for the training samples, were the same as those described in
Section 5.2.

The comparative methods using the segmented samples
of T𝑚 and P𝑚 obtained the following gender recognition ac-
curacy. The B1 method achieved an accuracy of 57.8±7.5%,
the B2 method an accuracy of 59.8±0.7%, the GP method
an accuracy of 60.8±1.2%, the SA method an accuracy of
59.0±0.9%, the CBAM method an accuracy of 52.0±2.1%,
and the EA method an accuracy of 59.4±1.6%. In contrast,
our GSA method using the non-segmented samples of T and
P achieved an accuracy of 64.2±4.6% as shown in Table 1.
We thus believe that our method with non-segmented body
regions, which uses the gaze-guided self-attention mecha-
nism, is more effective than the comparative methods with
segmented body regions.

Additionally, we evaluated the accuracy when using in-
dividual segmentation masks instead of the gaze distribution
𝒈 in the GSA layer. The pixel value in the segmentation
mask is 1 for the body region and 0 for the background re-
gion. We interpolated the size of the segmentation mask
from 80 × 160 pixels to 5 × 10 pixels for fitting to the size
of the feature map in the GSA layer. All other experimen-
tal conditions except for the segmentation masks were the
same as those described in Section 5.2. This comparative
method using the segmentation masks achieved an accuracy
of 47.2±1.6%. Our GSA method using 𝒈 achieved an ac-
curacy of 64.2±4.6% as described in Table 1. We believe
that the use of the gaze distribution improves the accuracy
relative to the use of segmentation masks.

5.7 Evaluation of a case featuring a different dataset

5.7.1 RAP dataset

To confirm the effectiveness of our GSA method, we eval-

(a)

(b)

(c)

(d)

Fig. 10 Examples of stimulus images of the RAP dataset: (a) woman
samples and (b) man samples. The average image of the pedestrians (c) and
gaze distribution 𝒈 (d).

uated the accuracy of gender recognition using the RAP
dataset [37], which is a dataset different from the CUHK
dataset used in Section 5.2. We measured gaze distribution
𝒈 using stimulus images selected from the RAP dataset. Fig-
ure 10(a) and (b) show examples of the stimulus images given
to the participants. We used 32 stimulus images. The size of
each stimulus image differed, and the mean size of the height
was 315.5 pixels and the mean size of the width was 130.4
pixels. We set the same proportions of man and woman
pedestrians and the same proportions of different body ori-
entations in the stimulus images. We used the measurement
settings described in Section 4.3. Sixteen participants (six
women and ten men, average age of 22.4±1.0 years) par-
ticipated in this study. The accuracy of gender recognition
performed by the participants was 96.5%.

Before describing the results of the gaze distribution,
we checked the alignment of the pedestrian regions. For
this purpose, we computed the average of the pedestrian
images in the RAP dataset, as shown in Figure 10(c). We
rescaled the height and width of the pedestrian images to
160 and 80 pixels, respectively. We see that the head, torso,
and legs appeared in the upper, middle, and lower regions
of the average image, respectively. Figure 10(d) shows the
gaze distribution measured using the stimulus images in the
RAP dataset. The figure shows that the participants’ gazes
are strongly gathered on the head region. This result has
the same tendency as the gaze distribution measured for the
CUHK dataset shown in Figure 6(b).

5.7.2 Case of training samples without an obstacle

To evaluate the accuracy of gender recognition when using
the training samples without an obstacle and the test sam-
ples with an obstacle, we used the subset CAM25 included
in the RAP dataset as the training sample and the subsets
CAM18, CAM27, and CAM31 as the test samples. Fig-
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Woman

Training samples (CAM25)

Man
Test samples (CAM18)

Woman Man
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Test samples (CAM27)

Man

Test samples (CAM31)

Woman Man

Fig. 11 Examples of training samples and test samples for evaluation of
recognition performance on the RAP dataset.

ure 11 shows examples of training and test samples. We
see background biases between training and test samples.
There was no obstacle in front of both woman and man
pedestrians in CAM25, whereas an obstacle was present in
CAM18, CAM27, and CAM31. The RAP dataset com-
prised 3317 images (961 women, 2355 men) in CAM25,
964 images (293 women, 667 men) in CAM18, 2100 images
(695 women, 1402 men) in CAM27, and 1321 images (476
women, 843 men) in CAM31. To maintain a 1:1 proportion
for the number of images between women and men, we ran-
domly selected the man images to match the number of the
woman images. This random image selection was repeated
three times, and the average accuracy was computed.

Table 5 shows the accuracy of gender recognition using
the B1, B2, GP, SA, CBAM, EA, and GSA methods when
using the test subsets CAM18, CAM27, and CAM31 with
the training subset CAM25 in the RAP dataset. We con-
firmed that the accuracy of our GSA was superior to those

Table 5 Accuracy (%) of gender recognition on the RAP dataset when
using the test subsets CAM18, CAM27, and CAM31 with the training subset
CAM25.

Training CAM25 CAM25 CAM25 AverageTest CAM18 CAM27 CAM31
B1 72.4±0.2 67.6±0.4 72.9±0.2 71.0±2.4
B2 69.0±0.2 73.7±0.4 73.5±0.7 72.1±2.2
GP 73.2±1.1 72.9±0.2 77.8±0.3 74.7±2.3
SA 71.9±0.3 67.8±0.1 72.8±0.2 70.8±2.2
CBAM 72.6±0.7 70.1±0.6 74.7±0.3 72.5±2.0
EA 72.9±0.2 68.0±0.2 74.6±0.5 71.8±2.8
GSA (ours) 77.0±0.5 75.7±0.3 80.0±0.1 77.6±1.8

of the B1, B2, and GP methods. We also confirmed that our
GSA obtains higher accuracy than the prevalent spatial at-
tention mechanisms of SA, CBAM, and EA. We believe that
the proposed method using the gaze-guided self-attention
mechanism has promising effectiveness on the RAP dataset
as well as the CUHK dataset.

5.7.3 Case of training samples with an obstacle

Furthermore, we evaluated the accuracy of gender recogni-
tion when using the training samples with an obstacle in the
RAP dataset. We used the subsets of CAM18, CAM27, and
CAM31. One subset was used as the training samples and
another one as the test samples. We evaluated the accuracy
using the permutation 3P2 of the three subsets. All other ex-
perimental conditions except the training samples were the
same as those in Section 5.7.2.

Table 6 gives the accuracy when using the training sam-
ples with an obstacle on the RAP dataset. We see that the
accuracy of our GSA method was also superior to those of
the B1, B2, GP, SA, CBAM, and EA methods. We believe
that our GSA method has improved performance when using
the training samples with an obstacle.

6. Conclusions

To improve the accuracy of gender recognition, we proposed
here a method of designing a spatial attention mechanism for
deep learning networks based on the gaze distribution that
can be trained on samples featuring background bias and yet
deliver high accuracy. The prevalent GP has the problem
that it assigns only a uniform attention weight to each in-
put feature map. Moreover, prevalent attention mechanisms,
such as SA, CBAM, and EA, are affected by background
bias in the training samples. To solve these problems, we
proposed the GSA, which assigns adaptive attention weights
to each input feature map while suppressing the effect of the
background bias using the gaze distribution. We confirmed
that our method, inspired by the gaze distribution represent-
ing human visual attention, improves the accuracy of gender
recognition compared with prevalent methods, based on the
GP, SA, CBAM, and EA, in cases involving different back-
grounds in training and test samples on CUHK and RAP
datasets. We also showed that incorporating the gaze distri-
bution into the spatial attention mechanism of deep learning
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Table 6 Accuracy (%) of gender recognition on the RAP dataset when using the training samples
with an obstacle. We evaluated the permutation of the CAM18, CAM27, and CAM31 subsets for the
training samples and test samples.

Training CAM18 CAM18 CAM27 CAM27 CAM31 CAM31 AverageTest CAM27 CAM31 CAM18 CAM31 CAM18 CAM27
B1 66.5±0.5 60.0±0.7 68.8±0.6 68.6±0.6 64.1±0.6 67.0±0.4 65.7±3.3
B2 61.8±0.6 56.8±0.5 70.0±0.9 70.3±0.1 61.9±0.6 67.9±0.6 64.4±5.2
GP 66.7±0.3 66.9±1.5 71.2±0.6 71.4±0.3 66.6±0.8 70.7±0.3 68.7±2.4
SA 65.7±0.7 60.2±1.3 69.0±0.4 69.5±0.6 64.5±0.5 67.3±0.5 65.9±3.4
CBAM 64.2±0.7 61.8±1.1 70.0±0.6 70.2±0.9 65.1±0.7 68.2±0.2 66.4±3.3
EA 65.3±0.4 62.8±0.4 68.5±0.8 70.0±0.3 64.6±0.8 67.0±0.8 66.3±2.7
GSA (ours) 68.5±0.7 71.3±0.4 73.8±0.4 73.2±0.7 69.4±0.1 72.6±0.3 71.4±2.1

has the potential to solve the background bias problem.
In future work, we intend to evaluate the effectiveness of

our method in classifying attributes other than gender, such
as age and clothing. We will also examine an image-by-
image gaze distribution instead of the averaged, single-gaze
distribution used in our GSA. We also intend to incorporate
the gaze distribution into conventional attention mechanisms
other than SA; e.g., pairwise self-attention and patchwise
self-attention [38].
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