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Abstract—Recent medical analytical studies have focused on
the phase lag index (PLI) to analyze the functional connectivity of
the brain. This paper assumes that the PLI contains informative
characteristics for automatically identifying electroencephalo-
gram (EEG) signals of epilepsy patients. We propose a method
for distinguishing between epileptic seizure and non-seizure EEG
signals using PLI histograms acquired from the signals of a
short period, randomly sampled from longer recordings, in
different brain regions. We demonstrate the ability of the method
to identify epileptic seizures by experiments on the publicly
available CHB-MIT Scalp EEG database.

Index Terms—Electroencephalogram signals, epileptic seizures,
histogram features, phase lag index.

I. INTRODUCTION

Epilepsy is a neurological disorder in which severe seizures
are sometimes caused by the abnormal activity of brain func-
tions. The prevalence of epilepsy is quite high, at about one
person in 100. For this reason, a doctor may diagnose many
epilepsy patients every day, using EEG monitoring systems. In
general, the EEG signals are repeatedly recorded across several
days. In rare cases, the signals are recorded continuously, 24
hours/day, during several days. In practice, a doctor directly
reads long-duration EEG recordings to find seizure charac-
teristics. It is said that reading long EEG recordings takes
substantial additional time—about one third of the recording
time—and so it is a heavy burden for a doctor. There is
therefore a need for a support system for primary screening, to
distinguish between seizure EEG signals and non-seizure EEG
signals and thereby assist a doctor in diagnosing epilepsy. For
such a system, it is essential to design a method for accurately
identifying seizure EEG signals.

To design a method for identifying epileptic seizure EEG
signals, we focus on the functional connectivity of the brain.
As described in [1], functional connectivity refers to the
degree of correlation in activity between spatially distant brain
regions. In the medical field, it has been reported that epilepsy
impairs the functional connectivity of the brain [2], [3].
Recently, medical analytical studies [4], [5] have reported that
the use of the phase lag index (PLI) is effective for analyzing
the functional connectivity of the brain. However, these studies
did not consider epileptic seizure EEG signals. Furthermore,
there is no method for automatically distinguishing between
epileptic seizure EEG signals and non-seizure EEG signals
using the characteristics of the PLI.

We propose a method for distinguishing between epileptic
seizure and non-seizure EEG signals using PLI histograms.
Our method extracts PLI histogram features by applying a
bandpass filter and computing the PLI values of EEG signals
during randomly sampled short periods. Experimental results,
using the publicly available CHB-MIT Scalp EEG database,
show that our method using PLI histogram features has the
ability to identify epileptic seizure EEG signals.

II. PHASE LAG INDEX

Before explaining the detail of our histogram features, we
explain PLI [6] and how it is used for analyzing the functional
connectivity of the brain. Phase synchronization indices such
as coherence and phase-locking value are widely used to rep-
resent the degree of connectivity. However, these indices are
erroneously increased by volume conduction1. This problem is
solved by PLI, which is another phase synchronization index.
Stam et al. define the PLI value p between two signals as

p =

∣∣∣∣∣ 1

T

T∑
t=1

sgn (∆φ(t))

∣∣∣∣∣ , (1)

where ∆φ(t) = φm(t)−φn(t) is the phase difference between
the two signals, sgn(∆φ(t)) is the signum function of ∆φ(t),
t ∈ {1, · · · , T} is the (discrete) time, T is the sampling
length of the signals, and φm(t) and φn(t) are the phase
components of the two signals. The range of ∆φ(t) is defined
as −π < ∆φ(t) ≤ π. ∆φ(t) is computed from two complex
signals converted using Hilbert transform, as we describe in
detail in (8). The range of p is 0 ≤ p ≤ 1. When p = 0, phase
synchronization does not appear or phase synchronization
appears only when ∆φ(t) is close to 0 or ±π. When p = 1,
phase synchronization perfectly appears except when ∆φ(t) is
close to 0 or ±π. In general, p takes a large value when phase
synchronization between the two signals strongly appears.

III. OUR PLI HISTOGRAM FEATURES

A. Overview

Here we outline our PLI histogram feature for distinguish-
ing between epileptic seizure and non-seizure EEG signals.
To design the feature, we used knowledge of the diagnosis

1Volume conduction: Suppose that neurons and synapses change their
electrical potential because of activity. The potential change diffuses and
reaches the electrodes on the scalp through the cerebrospinal fluid and skull.
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Fig. 1. Overview of generating our PLI histogram features.

provided by a doctor in a clinical setting. As described in [1],
a doctor diagnoses encephalopathy by checking the functional
connectivity of the brain. Specifically, the doctor observes
a pair of EEG signals over a short period, acquired from
distant brain regions. To automatically extract features for
identifying epileptic seizure signals, using knowledge of the
diagnosis, our method computes PLI values representing the
functional connectivity of the brain from pairs of signals over
short periods, which are randomly sampled from long-duration
recordings of EEG signals. It then constructs histograms using
the PLI values acquired from the pairs of signals, as shown
in Fig. 1. The details of our feature extraction method are
described below.

B. Procedure

To view EEG signals from an epilepsy patient, a doctor
uses an EEG monitoring system that has C connection chan-
nels. The doctor acquires an epoch of multi-channel EEG
signals with the time length T1. First, our method simply
applies a bandpass filter to an epoch to extract signals in
specific frequency bands. This frequency band is specified
as b ∈ {δ, θ, α, β, γ}, where (δ: 0.5−4 Hz), (θ: 4−8 Hz),
(α: 8−13 Hz), (β: 13−30 Hz), and (γ: above 30 Hz). Sup-
pose that we acquire an EEG signal xb,c(t) at discrete time
t ∈ {1, · · · , T1} in the c-th channel c ∈ {1, · · · , C} of an
epoch. To compute the PLI values, we generate an analytic
signal zb,c(t) of the c-th channel of frequency band b, as

zb,c(t) = xb,c(t) + jH(xb,c(t)) , (2)

where j is the imaginary unit and H(xb,c(t)) represents the
Hilbert transform of xb,c(t).

To compare signals over a short period in the analytic signal
zb,c(t), we use the pair of signals acquired during a period of
length T2(< T1). Our method performs random sampling until
S pairs are acquired, by repeating the following procedure. We

denote the start time (m,n)k of the k-th pair k ∈ {1, · · · , S}
by

m ∼ U(0, T1 − T2), (3)
n ∼ U(0, T1 − T2), (4)

where U(0, T1 − T2) represents the discrete uniform distri-
bution that randomly generates a duration between zero and
T1 − T2.

We define the pair of signals, over a short period, between
the c-th channel and d-th channel (c 6= d) using the start time
(m,n)k as

zm(t′) = zb,c(tc), (5)
zn(t′) = zb,d(td), (6)

where t′ ∈ {1, · · · , T2} is a discrete time, tc = m + t′ − 1,
td = n+ t′−1, and c, d ∈ {1, · · · , C} are the channels of the
EEG signals.

Having randomly sampled S pairs of the short-period sig-
nals zm(t′) and zn(t′) with start time (m,n)k, we compute
a PLI value for each. A PLI value pm,n

b,c,d, relating zm(t′) and
zn(t′), is defined as

pm,n
b,c,d =

∣∣∣∣∣ 1

T2

T2∑
t′=1

sgn (∆φ(t′))

∣∣∣∣∣ , (7)

∆φ(t′) = arg

(
zm(t′)zn(t′)

‖zm(t′)‖‖zn(t′)‖

)
, (8)

where arg(z) represents the argument of the complex number
z and zn(t′) represents the complex conjugate of zn(t′).

To generate the feature vector for identification, we compute
the histogram of the PLI values acquired by the random
sampling. We define the feature vector as the PLI histogram h,
to temporally and spatially compare the short-period signals
between the different channels. h is defined as

h =

C∑
c=1

C∑
d=c+1

[
h1b,c,d, h

2
b,c,d, . . . , h

N
b,c,d

]T
, (9)

where N is the number of bins in the histogram and hlb,c,d is
the frequency of the l-th bin. We count the frequency hlb,c,d
using a set consisting of pm,n

b,c,d, defined in Eq. (7), as

hlb,c,d = card{pm,n
b,c,d|al ≤ p

m,n
b,c,d < al+1}, (10)

where card is an operator representing the number of elements
in the set consisting of pm,n

b,c,d under the condition al ≤ pm,n
b,c,d <

al+1. It is worth noting that al = −1 + 2(l − 1)/N . When
pm,n
b,c,d = 1, we count it in hNb,c,d. The total number of pairs

of short-period signals is CS. We apply L1-normalization to
ensure that ||h||1 = 1.
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Fig. 2. Electrode alignment for recording EEG signals for bipolar EEG lead.
The blue line is the connection channel between electrodes.

IV. EXPERIMENTS

A. Dataset

To evaluate the accuracy of distinguishing between epileptic
seizure and non-seizure EEG signals using our PLI histogram
features, we used the publicly available CHB-MIT Scalp
EEG database [7]. This dataset contains EEG signals from
22 epilepsy patients (five males and 17 females, from 1.5
to 19 years old). The signals were annotated with the start
times of epileptic seizures. We set the time length of each
epoch T1 = 20 s. The sampling rate was 256 Hz. We had
to solve the problem that some EEG signals in the CHB-
MIT Scalp EEG database were recorded using a different
electrode alignment, so that they could not be used. To solve
this problem, we selected only EEG signals recorded using
the electrode alignment shown in Fig. 2. This alignment had
C = 18 connection channels. In addition, we removed the
patients whose signals contained fewer than seven epochs
annotated as seizures. To remove the effects of artifacts, we
did not use epochs with amplitudes exceeding 350 µV. Finally,
we used EEG signals of 11 epilepsy patients (two male and
nine female, from 1.5 to 16 years old). For each patient, both
seizure and non-seizure EEG signals were recorded.

B. Experimental Results

We used the leave-one-patient-out cross-validation scheme
to evaluate the accuracy of distinguishing between epileptic
seizure and non-seizure EEG signals. Epochs of multi-channel
EEG signals for one patient were used as test samples, and
those for the remaining ten patients were used as training
samples. Using the linear support vector machine (SVM),
we compared the accuracy of the identification methods. We
conducted our evaluations with frequency bands for b = δ, θ,
α, β, and γ signals, lengths of periods T2 = 0.1, 1, and 10 s,
and numbers of bins N = 2, 6, and 10. We randomly sampled
S = 1, 000 pairs of short-period signals. In the process of
training the linear SVM classifier, we assigned epochs of
seizure EEG signals to positive samples, and epochs of non-
seizure EEG signals to negative samples.

Table I shows the identification accuracy of our PLI his-
togram features while varying the frequency band b, the length
of the short period T2, and the number of bins N . We
calculated the average and standard deviation of the accuracy

TABLE I
ACCURACY (%) OF EPILEPTIC SEIZURE IDENTIFICATION USING PLI
HISTOGRAM FEATURES WHILE VARYING THE FREQUENCY BAND,

LENGTH OF THE SHORT PERIOD, AND NUMBER OF BINS

Frequency band b
δ θ α β γ

62.7±9.6 58.7±8.5 51.9±8.1 54.9±7.8 48.5±6.7

Length of short period T2 (s)
0.1 1 10

53.2±6.5 54.9±10.7 58.1±10.4

Number of bins N
2 6 10

55.2±8.0 55.6±10.9 55.4±10.6

values obtained when one parameter was fixed and the others
were changed. We can observe that the δ frequency band
yielded higher accuracy than the θ, α, β, and γ frequency
bands, and T2 = 10 s yielded higher accuracy than T2 = 0.1 s
and 1 s. For the number of bins N , the accuracy was almost the
same for N = 2, 6, and 10. We obtained the highest accuracy,
73.2% (sensitivity 58.2% and specificity 88.2%), using our
features with the δ frequency band, T2 = 10 s, and N = 6.

C. Visualization

We investigated which PLI histogram features contributed
to enhancing the accuracy of identifying epileptic seizure EEG
signals. We used the parameters of the feature achieving the
highest accuracy, as described in Section IV-B. Figs. 3(a),
(b), and (c) show the PLI histograms using δ signals for
seizures and (d), (e), and (f) show those for non-seizures.
The PLI values of seizure signals of short periods in the δ
band were greater than zero more often than those of non-
seizure signals. The pairs of signals taking large PLI values
contained discriminative characteristics in δ waves. We believe
that there is a high probability of phase synchronization in the
δ band of the seizure EEG signals. This result may suggest an
association with the appearance of the spike-and-slow-wave
complex at about 3 Hz during seizures. Figs. 4(a), (b), and
(c) show the PLI histograms using β signals for seizures,
and (d), (e), and (f) show those for non-seizures. The PLI
values of non-seizure signals of short periods in the β band
frequently became one. The pairs of signals whose value was
one contained discriminative characteristics in β waves. We
believe that the phase synchronization appeared in non-seizure
EEG signals of short periods in the β band. Because these
results are not explained by existing medical knowledge, we
need to perform further investigation.

D. Comparison with Cross-Correlation Features

We compared the accuracy of our PLI histogram features
with prevalent cross-correlation features [8] using the five
elements of the cross-correlation values, computed from the
EEG signals between channels. The prevalent cross-correlation
feature consisted of 5 × 153 = 765 dimensions because it
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Fig. 3. Examples of PLI histograms of δ signals of patients experiencing epileptic seizures in (a), (b), and (c), and non-seizures in (d), (e), and (f).
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Fig. 4. Examples of PLI histograms of β signals of patients experiencing epileptic seizures in (a), (b), and (c), and non-seizures in (d), (e), and (f).

was computed from the five elements between 18C2 = 153
combinations of channels. Both features were trained using a
linear SVM classifier. We used the same dataset as described
in Section IV-A. Our PLI histogram features achieved an
accuracy of 73.2%, whereas the prevalent cross-correlation
features achieved 57.9%. Thus, our PLI histogram features
improved the accuracy of identifying epileptic seizure EEG
signals, compared with the prevalent cross-correlation features.

V. CONCLUSIONS

We proposed a method for identifying epileptic seizure EEG
signals using PLI histogram features. By experiments on the
CHB-MIT Scalp EEG database, we demonstrated that our PLI
histogram features improved identification accuracy. In future
work, we intend to evaluate the accuracy with a greater number
of epilepsy patients and analyze the experimental results from
a medical perspective.
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