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Abstract—We investigate whether it is possible to classify the
gender of a standing person based on a video sequence containing
body sway recorded by an overhead camera. Existing methods
that extract a feature from the movement of a walking person
for gender classification cannot detect the slight movements of
a standing person. In this paper, we propose a method for
extracting a feature from the body sway of a standing person.
We design a spatio-temporal feature for representing body sway
using the frequency analysis of time-series signals derived from
the local movements of the upper body. To evaluate the accuracy
of our method, we acquired video sequences of body sway from
30 females and 30 males using an overhead camera. We found
that our method obtained 90.3±1.3% accuracy for the gender
classification of a standing person. We compared the accuracy of
our method with that of parameters based on medical data. We
found that the proposed spatio-temporal feature extracted from
body sway significantly improved gender classification accuracy.

I. INTRODUCTION

There is high demand for technology that can classify the
gender of a person based on a video sequence [1], [2], [3].
Such gender classification has various applications, such as
security surveillance and marketing planning. To accurately
classify the gender of a person, the characteristics that dis-
tinguish between females and males must be obtained. The
movements of a person in a video sequence have recently
been considered for representing such characteristics.

In general, the movements of a person can be divided
into walking movements (gait) and standing movements (body
sway). Below, we review methods that classify the gender of
a person based on walking or standing movements in a video
sequence. We first consider gender classification based on gait.
To distinguish between females and males based on gait, some
methods [4], [5], [6] extract the gait energy image (GEI) as
a feature for training a gender classifier. It has been reported
that GEIs can be used to classify the gender of a walking
person with high accuracy. However, methods based on GEIs
are designed for classifying the gender of a walking person. To
the best of our knowledge, there are no existing methods for
gender classification based on body sway. Here, we propose a
method for extracting a feature from body sway and investigate
whether it can be used for gender classification.

We discuss whether body sway can be used to distinguish
between females and males. Analytical research in the medical
field has shown that there are differences between standing
females and males in terms of body sway. Analytical stud-
ies [7], [8], [9] have used time-series signals of the center
positions of the pressure of the feet acquired from a force

plate placed on the floor. They demonstrated that there are
significant differences between females and males in terms
of the frequency characteristics and trajectories of the time-
series signals. These studies focused on obtaining medical data
on body sway and did not consider practical applications. To
apply such medical data for gender classification, a contact-
type sensor must be placed on the floor.

Here, we observe body sway using a camera, which is non-
contact-type sensor. Previous studies [10], [11], [12], [13], [14]
have measured body sway using a camera instead of a force
plate for applications such as fall prevention assessment, avatar
video generation, and person re-identification. However, the
features of body sway were not used to distinguish between
females and males.

Here, we investigate whether body sway can be used to
classify the gender of a standing person by extracting a feature
from a video sequence. We used an overhead camera attached
to the ceiling in our experimental setting. We assumed that
the head of a standing person makes larger movements than
those of the legs and waist. An overhead camera can observe
upper body sway, including that of the head. In our method, we
estimate the upper-body region in a video sequence to obtain
a silhouette sequence. We measure the time-series signals
of body sway from the silhouette sequence and extract a
feature for gender classification. We created a dataset of video
sequences of the body sway of 60 participants to evaluate
gender classification accuracy. We found that our method
obtained 90.3 ± 1.3% accuracy for gender classification on
our dataset. We also compared the accuracy of our method
with that of features derived from medical data and found
that our method has superior accuracy. To the best of our
knowledge, the use of body sway in video sequences for
gender classification has not been previously reported. Our
main contribution is the development of a method for gender
classification based on body sway. The remainder of this
paper is organized as follows. Section II reviews related work.
Section III describes our method and Section IV shows the
experimental results of gender classification. Finally, Section V
presents the conclusions.

II. RELATED WORK

A. Video Sequences of Walking People for Gender Classifica-
tion

To classify the gender of a walking person in a video se-
quence, some methods [4], [5], [6] use GEI features extracted
from gait. A GEI feature [15] is represented by an average



image calculated from a silhouette sequence containing the
movements of arms and legs during one gait cycle. Shan et
al. [4] applied GEI features directly to gender classification.
Martı́n-Félez et al. [5] temporally divided one gait cycle
into four intervals and extracted a GEI feature from each
interval for gender classification. Yu et al. [6] assumed that
the movements of arms and legs affect gender classification
accuracy. Their method extracts a GEI feature that represents
the movement of each body part and assigns an adaptive
weight to each feature. Various methods [4], [5], [6] assume
that arms and legs provide the most information. However,
the body sway of a standing person rarely includes large
movements of the arms and legs. In this paper, we extract
a feature from body sway for gender classification.

B. Use of Single Images for Gender Classification

Some methods extract features from a single image for
gender classification. Studies [16], [17], [18], [19] have pro-
posed the use of low-level features derived from the colors
and gradients in a single image. Other studies [20], [21],
[22], [23] applied a convolutional neural network (CNN)
to extract features from a single image in an end-to-end
framework. These methods achieve high accuracy in gender
classification when trained using a large number of images.
Here, we increase gender classification accuracy by incorpo-
rating single images with temporal movements. Convolutional
three-dimensional (C3D) [24] features are well-known spatio-
temporal features. Xu et al. [25] and Liu et al. [26] reported
that C3D features are useful for action recognition for clas-
sifying large movements, such as soccer shots, table tennis
shots, and swimming strokes. However, C3D features are not
designed for gender classification. We thus extract a spatio-
temporal feature from body sway that are suitable for gender
classification.

C. Analytical Research on Differences between Female and
Male in Terms of Body Sway

Analytical studies [7], [8], [9] have been conducted to
determine the differences between females and males in terms
of body sway. These studies obtained time-series signals of
body sway using a force plate placed on the floor and reported
that there are significant differences in these signals between
females and males in terms of frequency characteristics and
trajectories [7], the elliptic approximated from trajectories [8],
and the specific band of frequency characteristics [9]. How-
ever, they did not apply these parameters to gender classifi-
cation. In preliminary experiments, we found that we could
not achieve high gender classification accuracy using medical
data. We thus extract a feature from body sway to accurately
classify the gender of a standing person.

D. Applications of Body Sway in Video Sequences

Using a camera instead of a force plate to measure the
body sway of a standing person has various applications [10],
[11], [12], [13], [14]. Wang et al. [10] used body sway to
evaluate the risk of falling. They observed a person from

various directions using multiple cameras and obtained the
time-series signals of three-dimensional centers. Nishiyama et
al. [11] used body sway to generate a video sequence of an
avatar of a person. They observed a person using a camera
placed in front of the person and estimated the center position
from time-series signals. Yeung et al. [12] and Lv et al. [13]
applied body sway to evaluate a person’s balance in the clinical
field. They analyzed the time-series signals of body joints
obtained from Microsoft Kinect. Kamitani et al. [14] applied
body sway to identify people. They obtained the time-series
signals of body sway recorded by an overhead camera and
extracted the feature representing the identity of an individual.
The above examples demonstrate that body sway can be used
for various applications. However, body sway has not been
applied to gender classification. In this paper, we investigate
whether body sway can be used to classify the gender of a
standing person.

III. PROPOSED GENDER CLASSIFICATION METHOD

A. Overview

The proposed method can classify the gender of a standing
person using a video sequence of body sway. We acquire
a video sequence of a standing person using an overhead
camera attached to the ceiling. The overhead camera is used
to observe the upper body of a standing person, where the
amount of movement is larger than that of the lower body.
For the upper body, the head has the largest movement. We
extract an informative feature from the upper body for gender
classification by acquiring a video sequence of body sway.

Here, we discuss the camera setting used to view the upper
body of a standing person. Ceiling height, which varies in
real-world scenarios, affects the apparent size of a person and
thus the amount of the movement observed from body sway.
Fig. 1 shows examples of the apparent size of the upper body.
Although Figs. 1 (a) and (b) show the upper body of the same
female, the apparent sizes are completely different because
the ceiling heights are different. The same tendency for males
is shown in Figs. 1 (c) and (d). We thus develop a method
for body sway measurement that does not depend on ceiling
(camera) height.

The proposed method consists of the following three steps.
We assume that a person is standing below the overhead
camera and maintains the same posture. Fig. 2 shows an
overview of the proposed method. In the first step, we acquire
a video sequence of the standing person using the overhead
camera and use it to estimate a silhouette sequence that
represents the upper body. In the second step, we remove
the variation of the apparent size of the upper body in the
silhouette sequence due to the height of the overhead camera.
In the third step, we measure the time-series signals of body
sway from the silhouette sequence and extract a feature for
gender classification. We determine the gender class using the
extracted feature and a pre-trained classifier. We describe the
removal of the variation in the apparent size of the body region
in Section III-B and the extraction of a feature from body sway
for gender classification in Section III-C.
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Fig. 1. Examples of the variation of the apparent size of the upper body
in our experimental setting, where the camera height was randomly changed.
Female recorded by (a) low and (b) high camera. Male recorded by (c) low
and (d) high camera.

2. Removal of variation of apparent
upper body size

3. Measurement of time-series signals 
of body sway and extraction 
of features for gender classification

1. Estimation of silhouette sequence
from video sequence

Upper body size
without variation

Silhouette sequence

Input: video sequence recorded by an overhead camera

Output: gender class predicted using a classifier

LM feature

Fig. 2. Overview of proposed three-step method for gender classification.
The input is a video sequence containing body sway recorded by an overhead
camera and the output is a gender class predicted using a classifier and an
extracted feature.

B. Removal of Variation in Apparent Size of Person in Silhou-
ette Sequence

To accurately classify gender, the intra-class variation of
appearance should be small. However, the apparent size of
the upper body can increase this variation when the height
of the overhead camera varies, as described in Section III-A.
A silhouette sequence is also affected by the variation of
apparent size. Fig. 3 shows examples of the apparent size of
silhouette sequences of the upper body. The frames of the
silhouette sequences in Figs. 3 (a) and (b) are estimated from

(a) (b) (c) (d)

Fig. 3. Examples of silhouette sequence frames estimated from video
sequences. The overhead camera was set at different heights. Female recorded
by (a) low and (b) high camera. Male recorded by (c) low and (d) high camera.
Black and white pixels respectively represent the upper body and background.
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rectangular area 
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Output: silhouette sequence without size variation 
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Fig. 4. Removal of the variation of the apparent size of the upper body in a
silhouette sequence.

the same female but different camera heights. Although the
silhouette sequences both belong to the female class, their
apparent sizes of the upper body are different. The same
tendency can be seen for the male class in Figs. 3 (c) and
(d). If we do not consider the variation of the apparent size,
gender classification accuracy will be low because the intra-
class variation of appearance will be large.

We thus remove the variation of the apparent size in our
method, as shown in Fig. 4. In this step, we crop a rectangular
area from each input silhouette frame to remove the back-
ground region. The rectangular area includes the upper body
and has a margin to prevent cutting off the upper body. We set
this margin based on the maximum amount of movement. We
determine the margin for each silhouette sequence. Finally, we
apply a scaling technique so that the height and width of the
rectangular area are equal to the reference values H and W ,
respectively.

C. Extraction of a Feature from Body Sway for Gender
Classification

We now describe the extraction of a spatio-temporal feature
from body sway for gender classification. Our method is
inspired by the framework of an existing method [14] for per-
son re-identification. Fig. 5 shows the feature extraction step.
The upper body in each silhouette frame is radially divided
into I local blocks to extract a spatial feature. Subtractions
between a reference silhouette frame and silhouette frames are
calculated to extract a temporal feature. We now describe the
determination of the reference silhouette frame. The distances
between all silhouette frames are calculated. The reference
silhouette frame with the smallest distance is selected. In each
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Fig. 5. Feature extraction step. An LM feature is extracted from a silhouette
sequence of body sway.

local block, the amount of movement is calculated by summing
the absolute values of all subtractions to obtain the time-series
signals. Then, a window function of length L is convoluted
into the time-series signals of the amount of movement in each
local block. The power spectral density (PSD) [27] is estimated
from the time-series signals. PSD consists of the component of
the power value corresponding to each frequency. The number
of components of PSD in each local block is L/2. Finally, the
PSDs of all local blocks are combined into a feature vector for
gender classification. The dimension of the feature is IL/2.
The vector of PSDs is denoted as a local movement (LM)
feature.

IV. EXPERIMENT

A. Dataset

We evaluated whether the gender of a standing person
can be classified based on a video sequence of body sway
recorded by an overhead camera. We acquired video sequences
of the body sway of 60 participants (30 females and 30
males). Table I shows the details of the participants. The
same instructions were given to all participants. We asked
the participants to maintain an upright posture (Romberg’s
pose), shown in Fig. 6 (a), during the acquisition of their
video sequence. We assumed a scenario where people wear
the same work clothes in a factory. To reduce the changes in
face orientation during the acquisition of a video sequence,
we asked all participants to keep looking at a timer placed 3.0
m away. We set the height of the timer at 1.4 m. Fig. 6 (b)
shows the experimental setting for the acquisition of video
sequences of body sway. We randomly set the height of the
overhead camera to between 2.0 and 4.0 m from the floor.
The resolution and sampling rate of the overhead camera were
1920 × 1080 pixels and 30.0 Hz, respectively. We calibrated
the overhead camera such that the optical axis coincided with
the direction normal to the floor. The internal parameters of
the overhead camera were fixed. We set the time length of
each video sequence to 60 s. Fig. 7 shows examples of color
images of females and males in video sequences acquired in

TABLE I
DETAILS OF THE PARTICIPANTS IN OUR DATASET OF VIDEO SEQUENCES

CONTAINING BODY SWAY.

Female Male
Number of participants 30 30
Average age (years) 22.4± 6.3 21.6± 1.3
Average height (cm) 158.7± 4.7 170.2± 6.4

(a)
Female Male
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camera

2
.0

 m
 −

4
.0

 m

Video sequence 
of body sway

Participant

Timer

(b)

3.0 m 1
.4

 m

Fig. 6. Experimental setting for observing participants using an overhead
camera. (a) Examples of a female and a male standing with an upright posture.
(b) Camera setting for acquiring a video sequence of body sway.

our experimental setting. The apparent size of the upper body
in the color images varies because of differences in camera
height. The inter-class variation between females and males
is small even though the intra-class variation of the apparent
sizes is large.

B. Evaluation of Gender Classification Accuracy

We compared the accuracy of our method with those of three
other methods in our experiment. The details of the methods
are as follows.
Proposed method (LM): We used the LM features described
in Section III to represent the body sway of a standing person.
To extract an LM feature, we set the number of local blocks
to I = 8 and the length of a window function to L = 64 (2.1
s). We estimated a silhouette sequence from a video sequence
using a conventional background subtraction technique. We
set H = 100 pixels and W = 100 pixels. We applied a linear
support vector machine (SVM) as the classifier and set its
regularization parameter to C = 1.0.
Alternative method 1 (GEI): We used the GEI [15] features
reported in previous studies on the gender classification of
a walking person. To extract a GEI feature, we calculated
a temporal average image of all frames in a 60-s silhouette
sequence. We used the same silhouette sequences as those in
our method. We applied a linear SVM as the classifier and set
its regularization parameter to C = 1.0.
Alternative method 2 (CNN): We used a CNN [22] with
single images as a representative of conventional classification
techniques. The structure of the CNN consisted of four two-
dimensional convolutional layers and four two-dimensional
pooling layers. We used 45000 images of females and 45000
images of males as training samples for the CNN. The size of
the sample images was set to 100×100 pixels. Each pixel had
RGB color values. Binary cross-entropy with the stochastic
gradient descent was used.
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Fig. 7. Examples of color images of females and males in video sequences
acquired by an overhead camera. These images show variation in the apparent
size of the upper body due to camera height. The inter-class variation between
females and males is small even though the intra-class variation of the apparent
size is large.

Alternative method 3 (C3D): We used C3D [24] with short
video sequences as a representative of spatio-temporal feature
extraction. The structure of C3D consisted of four three-
dimensional convolutional layers and four three-dimensional
pooling layers. We used 2800 short video sequences of females
and 2800 short video sequences of males as training samples.
Each sample of a video sequence consisted of 16 frames. The
size of each frame was set to 100× 100 pixels. Each pixel of
a frame had RGB color values. Binary cross-entropy with the
stochastic gradient descent was used.

We randomly shuffled 60 participants and selected 50
participants as training samples and 10 participants as test
samples. We completely separated the participants between
the training samples and the test samples. We conducted the
random shuffling 30 times and calculated the average and
standard deviation of the gender classification accuracy for
each method.
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Fig. 8. Comparison of gender classification accuracy obtained using proposed
LM, GEI, CNN, and C3D features.

Fig. 8 shows the gender classification accuracy for each
method. The accuracy of our method is much higher than that
of GEI features. GEI features were designed to represent the
large movements of the arms and legs during walking and
thus cannot accurately represent the slight movements of a
standing person. Conversely, the proposed LM features were
designed to represent body sway. They thus have higher gender
classification accuracy compared with that of GEI features.
Furthermore, the accuracy of our method was superior to
that of the CNN. The CNN extracted only spatial features
from single images. It was not designed to extract temporal
features from movement. We used C3D features to extract
spatio-temporal characteristics. The proposed LM features
outperform these features. C3D features were not designed to
represent body sway (their target is large movements during
large movements) and thus have relatively low gender clas-
sification accuracy. The proposed LM features include better
spatio-temporal characteristics for representing body sway.

C. Visualization of SVM Weights Calculated from LM Features

We visualized the SVM weights calculated when training a
gender classifier to determine the most informative component
of the proposed LM features for gender classification. We used
I = 8 local blocks to extract an LM feature (see Section IV-B).
The local blocks are labeled P1 to P8 as shown in Fig. 9 (a).
Local blocks P2, P4, P6, and P8 correspond to the left hand,
back, right hand, and face, respectively. Fig. 9 (b) shows the
SVM weights of the LM features corresponding to the local
blocks. The horizontal axis represents the frequency in each
local block. The extreme left and right on the horizontal axis
of each local block represent DC and 15 Hz, respectively.
The vertical axis represents the weight of each component. A
component with a negative (positive) weight contributes to the
classification of females (males). The number of components
of an LM feature was I × L/2 = 8× 64/2 = 256.

First, we identified the most informative local block for
gender classification. We calculated the sum of the absolute
SVM weights in each local block. The sum for local blocks
P1 to P8 was 2.65, 1.72, 2.51, 3.44, 2.36, 2.36, 2.29, 2.11,
and 1.81, respectively. A local block was more informative for
gender classification when its sum was higher. Local block P4
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Fig. 9. Visualization of SVM weights for determining the most informative component of proposed LM features for gender classification. (a) Definition of
local blocks P1 to P8. (b) SVM weights of LM features corresponding to the local blocks.
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Fig. 10. Examples of LM features corresponding to local block P2 or P4 for
three females and three males.

(corresponding to a person’s back) had the highest sum and
was thus important for gender classification.

Next, we identified the most informative frequency band in
local block P4 for gender classification. The high-frequency
band is more informative than the low-frequency band for clas-
sifying the female class using the SVM weights corresponding
to P4 in Fig. 9 (b). To determine the differences in LM features
between females and males, some examples of the features
corresponding to P4 are shown in Fig. 10 (a). Examples of
those corresponding to P2 are shown in Fig. 10 (b). Local
block P2 was not discriminative because it had the lowest
sum of absolute SVM weights. We compared the features of
P2 with those of P4. In P4, there are large differences in the
high-frequency band (3.0 to 15.0 Hz), in which LM features of
females are higher than those of males. Conversely, there are
no remarkable differences between females and males in P2.
We now discuss the reasons for the differences in P4. Local
block P4 contained the back of the head, where females often
have longer hair. We believe that the differences in the high-
frequency band appear because the long hair moved during
body sway.

D. Gender Classification Accuracy Obtained using Medical
Data

We evaluated the gender classification accuracy of parame-
ters derived from medical data. As described in Section II-C,
analytical studies [7], [8], [9] have reported that the differences
between females and males can be observed in the frequency
characteristics and trajectories of time-series signals. Note that
these studies used a force plate to acquire the parameters. In
our experiment, we used an overhead camera instead of a force
plate to acquire the time-series signals of the center positions
of the upper body using silhouette sequences.

We used ten parameters, namely F1 to F6 for frequency
characteristics and T1 to T4 for trajectories, reported in
previous studies [7], [8], [9]. The parameters were set as
follows:
F1 [7]: DC component of the power spectrum of center
positions.
F2 [7]: Top accumulated frequency component of the power
spectrum of center positions.
F3 [8]: DC component of the power spectrum of velocities.
F4 [9]: Sum of the vertical power spectrum at frequencies
lower than 0.2 Hz.
F5 [9]: Sum of the horizontal power spectrum at frequencies
lower than 0.2 Hz.
F6 [9]: Sum of the vertical power spectrum at frequencies
higher than 2.0 Hz.
T1 [8]: Area of an ellipse approximated to the trajectory of
center positions.
T2 [8]: Length of the major axis of the ellipse.
T3 [8]: Length of the minor axis of the ellipse.
T4 [8]: Length of the trajectory of center positions.

We tested each parameter as a one-dimensional feature
vector for evaluating gender classification accuracy. We also
combined the parameters into a ten-dimensional feature vec-
tor (All) to improve accuracy. The experimental conditions,
except for the features, were the same as those for our method
in Section IV-B.

Fig. 11 shows a comparison between the accuracy of each
parameter derived from medical data and that of the proposed
LM feature. The proposed LM feature had higher accuracy.
The accuracy of the combined parameters was higher than that
of individual parameters. The results show that the proposed
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Fig. 11. Accuracy of parameters F1-F6 and T1-T4 derived from medical
data and proposed LM feature. ‘All’ represents a feature that combines all
parameters.

LM feature has higher gender classification accuracy than that
of parameters derived from medical data.

V. CONCLUSIONS

We investigated whether the gender of a standing person can
be classified by extracting a feature that represent body sway in
a video sequence recorded by an overhead camera. Our method
normalizes the apparent size of silhouette sequences of the
upper body to remove variation. We divided the upper body
into local blocks to represent spatial features and measured
the time-series signals of body sway from each local block
to represent temporal features. We acquired video sequences
containing body sway for 60 participants to evaluate gender
classification accuracy. The gender classification accuracy was
90.3±1.3% for our spatio-temporal feature. We confirmed that
body sway in a video sequence improves gender classification
accuracy compared with that for parameters derived from
medical data.

In future work, we intend to develop a method for extracting
features that represent essential gender differences and are ro-
bust against posture changes. We will also investigate whether
body sway can be used to classify attributes other than gender,
such as age and clothing.
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