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Abstract: We propose a method to improve gender classification from pedestrian images using a random forest weighted
by a gaze distribution. When training samples contain a bias in the background surrounding pedestrians, a
random forest classifier may incorrectly include the background attributes as discriminative features, thereby
degrading the performance of gender classification on test samples. To solve the problem, we use a gaze
distribution map measured from observers completing a gender classification task for pedestrian images. Our
method uses the gaze distribution to assign weights when generating a random forest. Each decision tree of
the random forest then extracts discriminative features from the regions corresponding to the predominant
gaze locations. We investigated the effectiveness of our weighted random forest using a gaze distribution by
comparing the following alternatives: assigning weights for feature selection, assigning weights for feature
values, and assigning weights for information gains. We compare the gender classification results of our
method with those of existing random forest methods. Experimental results show our random forest using
information gains weighted according to the gaze distribution significantly improved the accuracy of gender
classification on a publicly available dataset.

1 INTRODUCTION

Gender classification using pedestrian images is an in-
tegral part of developing a novel marketing system in
a general merchandise store. Existing methods (An-
tipov et al., 2015; Schumann and Stiefelhagen, 2017)
have improved the accuracy of gender classification
using deep learning or other machine learning tech-
niques. The existing methods require a large num-
ber of training samples to attain high-accuracy classi-
fication results. Collecting a large number of training
samples entails a high cost. Furthermore, the train-
ing samples may include an unexpected bias. For in-
stance, the background surrounding the pedestrians in
the training samples forms a bias if the pedestrian im-
ages are collected in a specific place. This bias may
cause the gender classifier to incorrectly regard the
background as discriminative features.

To avoid the problems caused by the bias from
the background surrounding the pedestrians in the
training samples, we must extract discriminative fea-
tures from pedestrian images for gender classifica-
tion. A human can correctly distinguish the gender
of a pedestrian in an image by examining body char-

acteristics and excluding the background. We use
this human visual capability to aid in feature extrac-
tion for gender classification, to address the scenario
whereby the background in the training samples con-
tains a bias. Recent studies have proposed extract-
ing discriminative features by incorporating a gaze
distribution measured from observers viewing stim-
ulus images (Sattar et al., 2017; Murrugarra-Llerena
and Kovashka, 2017; Nishiyama et al., 2018). Al-
though these existing methods do not mention the
background bias in the training samples, the method
is applicable to the problems caused by the bias. In
particular, Nishiyama et al. explores the use of the
gaze distribution to design a preprocessing technique
for a gender classifier. A gaze distribution was mea-
sured from observers while determining the gender
of pedestrians in images. This method extracted fea-
tures by assigning large weights for body regions cor-
responding to the gaze locations measured from the
observers. However, this method did not consider in-
cluding the gaze distribution to generate the classifier.
Rather, this method simply used the gaze distribution
to assign weights to the pixel values in the pedestrian
images as a preprocessing step for classification.



Here, we consider using the gaze distribution
when generating a random forest (Breiman, 2001).
As shown in (Rokach, 2016), a random forest con-
sisting of many decision trees can obtain a high clas-
sification performance for various applications. The
process of generating the decision trees is based on
randomness according to the uniform distribution. In
this paper, we consider tuning the randomness ac-
cording to the gaze distribution instead of the uni-
form distribution. To do this, we use a weighted ran-
dom forest (Amaratunga et al., 2008; Winham et al.,
2013; Maudes et al., 2012). Amaratunga et al. as-
signed large weights to the training samples contribut-
ing most to the classification performance. Winham et
al. assigned large weights to the votes in the decision
trees that contributed most to the classification per-
formance. However, these existing methods are not
easily altered to include a gaze distribution because
the methods did not consider the positions of features
in the pedestrian images. Maudes et al. assigned ran-
dom weights to features and information gains when
generating the decision trees to increase noise toler-
ance. The features and information gains are deeply
relevant to positions in pedestrian images. However,
the existing method simply used random weights and
did not consider a gaze distribution.

To this end, we hypothesize that the features and
information gains of the random forest depend on
a gaze distribution that considers the frequent gaze
locations of observers. We propose a method to
correctly classify gender by generating a weighted
random forest using a gaze distribution on training
samples that contain a background bias. To design
this novel method of generating a random forest,
we investigated the following alternatives: assigning
weights for feature selection, assigning weights for
feature values, and assigning weights for the informa-
tion gains. We evaluated the accuracy of the gender
classification using these alternatives on a publicly
available dataset. We confirmed that our method of
assigning to the information gains outperformed the
other methods.

2 BACKGROUND BIAS IN
TRAINING SAMPLES

Training samples collected for gender classifica-
tion may contain specific objects in the background
surrounding the pedestrians, thereby introducing a
bias. Here, we discuss a case whereby the training
samples showing males contain a fence in the back-
ground while the training samples showing females
do not, as shown in Figure 1. This case may be preva-
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Figure 1: Examples of training samples containing a bias
from the background surrounding the pedestrians.

lent when many females appear in the vicinity of a
certain camera (e.g., near a cosmetics counter), and
many males appear in the vicinity of another camera
(e.g., around a menswear section). In our preliminary
experiments, we observed that the accuracy of gen-
der classification declined when using training sam-
ples containing a background bias (e.g., the presence
or absence of a fence). A random forest gender clas-
sifier included the background bias as discriminative
features rather than the true differences between the
physical appearances. For example, a test sample of a
female with a fence in front was incorrectly classified
as male. Avoiding this problem generally requires a
large number of training samples containing various
backgrounds for both genders. When the background
is obviously biased, we could modify the pedestrian
image collection strategy. In some cases, once the
sample collection is already complete, an unexpected
bias may be found in the training samples according
to the outputs of a gender classifier. Because the col-
lection of training samples is very time-consuming,
we may need to use the collected training samples de-
spite their bias. Therefore, our method aims to cor-
rectly classify gender using a weighted random for-
est incorporating a gaze distribution when the training
samples contain a background bias.

3 WEIGHTED RANDOM FOREST
USING A GAZE DISTRIBUTION

3.1 Overview of decision tree generation

The existing method for generating a random for-
est (Breiman, 2001) is as follows. Subsets of training
samples are prepared using bootstrap sampling, and



each subset is used to generate a decision tree in the
random forest. We denote a pixel of color ci in the po-
sition (xi,yi) of a pedestrian image as a feature value
fi(xi,yi,ci). In the field of computer vision (Gall et al.,
2011), the difference between pixel values in an im-
age observed from two positions is widely used as a
feature value. In this paper, we directly use the pixel
values as features to simplify the generation of the de-
cision trees in the random forest.

When generating each decision tree from each
subset of training samples, a feature value fi(xi,yi,ci)
and a threshold t j are randomly selected. The in-
formation gain is computed using the selected fea-
ture value and selected threshold. The random se-
lection of fi(xi,yi,ci) and t j is repeated until M fea-
ture values and N thresholds are stored. The stored
feature values and thresholds are used to determine a
branch condition, where a training sample in a par-
ent node is branched to either the left or right child
node. The existing method searches a branch condi-
tion using the information gains computed from the
candidate parameters {xi,yi,ci, t j}. An information
gain Ii, j(xi,yi,ci, t j) of a candidate parameter is rep-
resented as:

Ii, j(xi,yi,ci, t j) = H(S)− ∑
k∈{L,R}

|Sk|
|S|

H(Sk), (1)

where S is a set of training samples in a parent node,
Sk is a set of training samples in a child node, and H( )
is the entropy. Note that SL∩SR = φ and SL∪SR = S.
The branch condition at each node is represented as:{

s ∈ SL f (xi,yi,ci)≥ t j,
s ∈ SR otherwise.

Entropy is computed as follows:

H(S) =− ∑
a∈{male, f emale}

p(a)log(p(a)), (2)

where p(a) is the ratio of the training samples of gen-
der type a contained in the set S. The candidate pa-
rameter set corresponding to the maximum informa-
tion gain is used as a branch condition from the parent
node to the child nodes. The branch condition search
is repeated until the depth reaches a preset value.

3.2 Gaze map

We represent the gaze distribution using the gaze map
described in (Nishiyama et al., 2018). To generate
a gaze map, observers complete a pedestrian gender
classification task on stimulus images, and the ob-
server gaze locations are recorded. The average of
the measured gaze locations is computed across dif-
ferent observers and stimulus images. g(xi,yi) de-
notes a pixel value at a position (xi,yi) of the gaze
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Figure 2: Generating a gaze map from a gender classifica-
tion task assigned to oberservers.

map. The range of g(xi,yi) is set to [0,1], and the
size of the gaze map is equal to that of the stimulus
images. Figure 2 shows an overview of the process
of generating a gaze map from a gender classifica-
tion task assigned to multiple observers. In the figure,
the dark region in the gaze map represents the most
frequent gaze locations gathered from the observers.
Nishiyama et al. demonstrated that the head region
was the most prevalent gaze location when judging
gender from pedestrian images.

3.3 Assigning weights for feature
selection

We describe the method of assigning weights for fea-
ture selection when generating a random forest. We
begin by outlining the existing methods (Breiman,
2001; Maudes et al., 2012). When applying the
existing methods for gender classification, the posi-
tion (xi,yi) of a feature value is randomly selected
according to the uniform distribution. In contrast,
our method selects the position (xi,yi) of a feature
value according to the gaze distribution where a large
weight indicates the areas where the gaze locations
of the observers are gathered. Figure 3 shows an
overview of our method. The figure demonstrates
that the feature values in the dark regions of g(xi,yi)
(where the gaze locations of observers are gathered)
are frequently selected.

3.4 Assigning weights for feature values

We describe a method for assigning weights for fea-
ture values when generating the random forest. The
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Figure 3: Assigning weights for feature selection.
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Figure 4: Assigning weights for feature values.

existing methods (Breiman, 2001; Maudes et al.,
2012) did not modify the feature values. Maudes et
al. assigned random weights to the feature values ac-
cording to the uniform distribution. In contrast, our
method assigns weights according to the gaze distri-
bution represented as a gaze map g(xi,yi) using the
following equation:

f ′(xi,yi,ci) = f (xi,yi,ci)g(xi,yi). (3)

Figure 4 shows an overview of our method. In the
figure, a weighted feature at position (xi,yi) attains a
large weight when it corresponds to the dark region
of g(xi,yi) where the gaze locations of the observers
are gathered. Note that the above procedure achieves
the same effectiveness as the preprocessing technique
described in (Nishiyama et al., 2018).

3.5 Assigning weights for information
gains

We describe a method to assign weights for the in-
formation gains when generating a random forest.
We explain our method by contrasting with the exist-
ing methods (Breiman, 2001; Maudes et al., 2012).
Breiman computed an information gain from pa-
rameter candidates {xi,yi,ci, t j} as described in Sec-
tion 3.1. Maudes et al. computed information gains
using the same approach as Breiman and additionally
weighted them according to the uniform distribution.
In contrast, our method assigns weights for an infor-
mation gain according to the gaze distribution rep-
resented by a gaze map g(xi,yi) using the following
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Figure 5: Assigning weights for information gains.

equation:

I′i, j(xi,yi,ci, t j) = Ii, j(xi,yi,ci, t j)g(xi,yi). (4)

We use the parameter set {xi,yi,ci, t j} that cor-
responds to the maximum information gain
I′max(xi,yi,ci, t j) as a branch condition from a parent
node to a child node. Figure 5 shows an overview
of our method. In the figure, a weighted information
gain attains a large value when it corresponds to the
dark region of the gaze map g(xi,yi) where the gaze
locations of the observers are gathered.

4 EXPERIMENTS

4.1 Dataset

We evaluated the accuracy of our method on the
CUHK dataset included in the PETA dataset (Deng
et al., 2014). We used pedestrian images with or with-
out a bias created by a fence in the background sur-
rounding the pedestrians. We included training sam-
ples according to the following condition:

• T (Female, Male with a fence),

and test samples according to the following condi-
tions:

• P1 (Female, Male),

• P2 (Female, Male with a fence),

• P3 (Female with a fence, Male),

• P4 (Female with a fence, Male with a fence).

Figure 6 shows examples of the training samples and
the test samples. The CUHK dataset consisted of 476
males without a fence, 426 males with a fence, 419 fe-
males without a fence, and 355 females with a fence.
The size of the pedestrian images was 80×160 pixels.

We used the gaze map shown at the bottom of Fig-
ure 2. We generated the gaze map using the proce-
dure described in (Nishiyama et al., 2018). We used
eight stimulus pedestrian images to measure the gaze
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Figure 6: Examples of training samples T and test samples
P1 to P4 for gender classification.

distribution from 14 observers. The stimulus pedes-
trian images were randomly selected from the CUHK
dataset and were not included in either the training
samples or the test samples.

4.2 Basic gender classification
performance

We evaluated the gender classification accuracy of the
following methods:

• Baseline (Breiman, 2001),

• Random weight (Maudes et al., 2012),

• Our method 1 (Assigning weights for feature se-
lection),

• Our method 2 (Assigning weights for feature val-
ues),

• Our method 3 (Assigning weights for information
gains).

We generated five test sets by randomly selecting
samples from the CUHK dataset. Each training set
consisted of 323 males and 323 females, and each test
set consisted of 17 males and 17 females. We set the
number of random selections for the feature values
to M = 196, the number of random selections for the
thresholds to N = 50, the number of decision trees to
200, and the depth of each decision tree to 5.

Figure 7 shows the accuracy of the gender classi-
fication for the training sample sets P1 to P4. We see
that the accuracies of the baseline and random weight
methods were almost the same for (a) to (d). Our
methods improve the accuracy for the scenarios where
the background differed between the training samples
and test samples, for (a), (c), and (d). In particular, as-
signing weights for the information gain (our method
3) outperformed the other methods for these scenar-
ios. However, our methods degraded the accuracy for
(b). To investigate the reason for the degradation, we
conducted a comparison using importance maps in the
next section.

4.3 Importance map of the random
forest

We generated an importance map using the following
procedure:

1. We initialized an importance map of the same size
as the training samples and set each pixel value to
0.

2. We generated validation samples (out-of-bag) that
were not selected as training samples using boot-
strap sampling to generate each decision tree.

3. We input the validation samples into each decision
tree.

4. We computed an information gain Ii, j(xi,yi,ci, t j)
or I′i, j(xi,yi,ci, t j) for each node that was visited
by each validation sample.

5. We added the information gain to the pixel value
at position (xi,yi) in the importance map. We also
added the same value to the eight-neighborhood
of (xi,yi).

6. We suppressed extremely large values by comput-
ing the square root of the added value at each po-
sition in the importance map.
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Figure 7: Accuracy of gender classification for training
sample sets P1 to P4.

Note that we used the training samples corresponding
to condition T described in Section 4.1.

Figure 8 shows the importance maps correspond-
ing to the baseline, random weight, our method 1, our
method 2, and our method 3. In the figure, the dark

(b) Random weight	(a) Baseline	

(c) Our method 1	 (d) Our method 2	 (e) Our method 3	

Figure 8: Comparison between the importance maps of the
existing methods and our methods.

regions represent the areas that each decision tree in
the random forest regarded as discriminative features
when classifying gender. In (a) and (b), we see that
the values in the importance map were high where
there was a fence in the background. This indicates
that the presence or absence of a fence was used for
classifying gender by the existing methods. In Fig-
ure 8(d), we see that the values of the importance
map generated using our method were high for a part
of the fence in the background. For this reason, if
the weights of the gaze map were even slightly larger
than zero, the thresholds for the branch conditions in
the decision trees were searched in the small range of
the weighted values.

In Figure 8(c) and (e), we see that the values of the
importance maps corresponding to our methods were
high in the head regions where the observers looked
most when judging gender. Note that the values in (c)
were also high for the background around the right
shoulders. This indicates that the training samples of
the CUHK dataset contain a background bias in addi-
tion to the fence that we did not originally consider.
We confirm that our method avoids the problem of
the additional background bias by using the weights
according to the gaze distribution.

To investigate the similarity between the impor-
tance map and the gaze map, we evaluated the nor-
malized correlation coefficient. We obtained −0.04
for the baseline method,−0.06 for the random weight
method, 0.40 for our method 1,−0.02 for our method



2, and 0.76 for our method 3. We confirmed that
the similarity between the importance map and the
gaze map is high when using our method 3 to assign
weights for the information gains.

4.4 Comparison using manually
selected body regions.

To confirm the effectiveness of using a gaze distribu-
tion to generate the random forest, we evaluated the
accuracy of our method by comparing it with the ex-
isting methods on manually selected body regions. As
described in (Li et al., 2013), using manually selected
body regions improved the accuracy over the direct
use of pedestrian images. We evaluated the methods
using the following body regions:

• Whole body: We selected a region containing the
whole body by binarizing pixel values of the av-
erage pedestrian image from the CUHK dataset.
Figure 9(a) shows an example of the whole body
region.

• Upper body: We selected a region containing
the upper body according to the definitions of the
head, shoulders, and torso described in (Wu and
Nevatia, 2005). Figure 9(b) shows an example of
the upper body region.

• Head and shoulders: We selected a region con-
taining the head and shoulders according to the
definition of the head and shoulders described
in (Wu and Nevatia, 2005). Figure 9(c) shows an
example of the head and shoulders region.

In the figure, the pixel values in the black region are
set to zero. We used the same regions for the train-
ing samples and the test samples. We generated the
random forest using the baseline technique (Breiman,
2001). We used the same experimental conditions as
in Section 4.1, with the only difference being the body
region selection. For comparison, we use our method
3 (assigning weights for the information gain) that ac-
quired the highest accuracy in Section 4.2.

Figure 10 shows the accuracies of our method di-
rectly on the original images and the existing methods
using manually selected body regions. We see that
our method outperformed the exisiting methods in
(a). However, the accuracy of our method was lower
than one of the existing methods in (b). To investi-
gate the degradation of the accuracy, we again gen-
erated importance maps as described in Section 4.3.
Figure 11 shows the importance maps of the exist-
ing methods using manually selected body regions.
In (a), the existing method using the whole body re-
gion emphasized the presence of the fence at the feet

(a) Whole body (b) Upper body (c) Head and shoulders 

Figure 9: Pedestrian images with manually selected parts.
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Figure 10: Accuracy of gender classification when using
manually selected image regions.

of the pedestrians. In (b) and (c), the existing meth-
ods using head, shoulder, and torso regions empha-
sized the background of the right side of the pedes-
trians in addition to the head regions. The accuracy
of our method is superior to that of the existing meth-
ods using manually selected body regions because our
method correctly ignores the background bias as a
feature for gender classification.



(a) Whole body	 (b) Upper body	 (c) Head and 
shoulders 	

Figure 11: Comparison of importance maps when using
manually selected body parts.

5 CONCLUSION

We proposed a gender classification method using
gaze distribution to generate a random forest. Our
method assigned larger weights for feature selection,
feature values, and information gains corresponding
to the predominant gaze locations of the observers.
We confirmed that our method significantly improved
the accuracy of gender classification in the presence
of a background bias.

In future work, we will further evaluate our
method on various datasets using various human at-
tributes. We will also explore the use of the gaze dis-
tribution with other machine learning techniques.
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