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Abstract—We propose a method to determine whether the
early onset of acute encephalopathy causes severe sequela by
analyzing the frequency of electroencephalogram waves. Even
though sequela can severely damage the brains of infants, no
prevalent method can automatically diagnose acute encephalopa-
thy in them. We solve this problem by designing a discriminative
feature that delivers impressive classification performance. Based
on knowledge of the diagnosis, our method applies a bandpass
filter, randomly selects pairs of waves over a short period, and
computes a band correlation histogram from a distribution of
their correlation coefficients. The results of experiments show
that the band correlation histogram is superior to the prevalent
method in the classification of a dataset of patients with acute
encephalopathy.

Index Terms—EEG waves, acute encephalopathy, band corre-
lation histogram

I. INTRODUCTION

Impaired consciousness and convulsions are typical symp-
toms of acute encephalopathy in infant patients. Acute en-
cephalopathy is caused by a viral infection that induces high
fever, such as in people afflicted with the influenza virus.
Severe sequela frequently persists if acute encephalopathy
has progressed [1]. Thus, a system is needed to support the
diagnosis of acute encephalopathy at early onset to avoid
severe sequela.

To diagnose acute encephalopathy, doctors generally em-
ploy diagnostic imaging through magnetic resonance imaging
(MRI) or electroencephalography using EEG. However, MRI
scans cannot be used for the diagnosis of the early onset of
acute encephalopathy because the relevant abnormalities are
not apparent [2]. On the contrary, EEG can help discover
abnormalities relating to acute encephalopathy in case of early
onset [3]. The doctor can then administer appropriate treatment
to prevent severe sequela.

There are two representative cases of status epilepticus:
acute encephalopathy with biphasic seizures and late reduced
diffusion (AESD), and prolonged febrile seizure (FS). Al-
though FS is easily curable, AESD in patients has a high
probability of progressing to severe sequela. Distinguishing
AESD from FS using EEG is a challenging task because
AESD waves are visually similar those representing FS. Doc-
tors thus need adequate training and experience to correctly
distinguish the AESD waves from those of FS. An experienced
doctor can manually read EEG waves and detect abnormalities
when slow waves of long wavelengths (0.5 − 8 Hz) appear

repeatedly [4]. However, abnormal findings such as waves of
this kind frequently appear in representations of both AESD
and FS. An inexperienced doctor can thus make an erroneous
diagnosis. In this paper, we propose a method to automatically
determine whether a given case of acute encephalopathy can
be classified as AESD using EEG waves. In particular, our
method splits frequency bands used by experienced doctors for
diagnosis. Note that we consider waves that have previously
been manually selected by a doctor such that they contain no
artifacts.

Several methods have been proposed to classify cases
of encephalopathy other than AESD [5]–[10]. For example,
Chandaka et al. [5] exploited a feature vector using cross-
correlation among EEG waves to diagnose epilepsy in patients.
However, the waves of AESD exhibit different characteristics
in terms of frequency distribution from those of epilepsy.
In a preliminary experiment, we were unable to obtain high
classification performance in the diagnosis of AESD using the
prevalent method [5] (the likelihood of correct diagnosis was
close to chance).

In light of the above, we propose a method to determine
whether cases of acute encephalopathy are those of AESD,
using the feature vector of a band correlation histogram
extracted from EEG waves. We design our feature vector based
on knowledge of the diagnosis, where the doctor identifies
temporal differences among waves over a short period. Our
method extracts the feature by applying a bandpass filter,
computing the coefficients of correlation among waves over
a short period, and generating a correlation histogram based
on their distribution.

II. RELATED WORK

The relevant methods extract features from EEG waves to
classify various types of encephalopathy. Bajaj and Pachori [6]
proposed a method that uses the bandwidth of the amplitude
and phase of EEG waves to identify cases of epilepsy. Kumar
and Dutt [7] proposed a method that employs graph struc-
tures between channels of EEG to determine schizophrenia
in patients. Temko et al. [8] proposed a method using EEG
waves and the heart rate to identify cases of hypoxic-ischemic
encephalopathy, and Ahmed et al. [9] proposed a method
that uses a Gaussian mixtures’ model to estimate the level of
sequela in patients of the same illness. Furthermore, Ahmed
et al. [10] proposed a method that uses features of speech
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Fig. 2. Overview of knowledge of the diagnosis of acute encephalopathy.

recognition to estimate the level of brain injury. These methods
were designed to extract a feature for each classification
of encephalopathy. On the contrary, our method extracts a
discriminative feature for AESD using a correlation histogram
computed from EEG readings of infant patients.

III. BAND CORRELATION HISTOGRAM FOR FEATURE
EXTRACTION

A. Overview

We design a feature vector to identify AESD based on
knowledge of the diagnosis by a doctor in a clinical setting.
To measure EEG waves from an infant patient, the doctor sets
electrodes on the patient’s head as shown in Figure 1. The
doctor then records the potential difference at each channel
by subtracting the potentials between electrodes. As described
in [11], [12], he/she diagnoses encephalopathy by observing
a pair of EEG waves over a short period. For instance, as
illustrated in Figure 2, the doctor checks whether similar δ
and θ waves (0.5 − 8 Hz) appear temporally. Five types of
brain waves are of most interest in neuroscience (δ(0.5 − 4
Hz), θ(4− 8 Hz), α(8− 13 Hz), β(13− 30 Hz), γ (above 30
Hz)) from low to high frequencies, respectively. We use δ and
θ waves based on the doctor’s knowledge of the diagnosis. To
extract the feature to identify AESD using knowledge of the
diagnosis, our method computes a correlation coefficient from
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Fig. 3. Flow to generate the band correlation histogram.

a pair of waves over a short period randomly sampled from
EEG waves. It then generates a band correlation histogram
using the distribution of the correlation coefficients as shown
in Figure 3. The details of our method are described below.

B. Algorithm to generate the band correlation histogram
The doctor measures the EEG waves of an infant patient

and selects ones with no artifacts, but with the abnormalities
that feature in both AESD and FS. We call a selected wave
an epoch. To extract δ and θ waves used for diagnosis by
a doctor, we simply apply a bandpass filter to an epoch to
extract the components of these waves. We define an epoch
xb,i(i ∈ {1, · · · , N} and, a band b ∈ {δ, θ, α, β}) containing
N channels as

xb,i = [x1b,i, x
2
b,i, · · · , x

T1

b,i]
T , (1)

where xtb,i is the potential difference acquired by the i-th
channel at time t and T1 is the length of the epoch used for
feature extraction.

To compare waves over short periods in epoch xb,i, we set
the pair of waves acquired in period T2. Our method selects S
pairs by randomly repeating the below procedure. We denote
the start time (mk, nk) of the k-th pair by

mk ∼ U(0, T1 − T2) , (2)
nk ∼ U(0, T1 − T2) , (3)

where k ∈ {1, · · · , S}, and U() represents the discrete uniform
distribution that randomly returns the duration from zero to
T1 − T2.

However, when returning the margin part by Hamming
window, we randomly return the duration again. We define
the pair of waves of short period xmb,i,x

n
b,j(j ∈ {1, · · · , N})

using the start time (m,n) as

xmb,i = [xm+1
b,i , xm+2

b,i , · · · , xm+T2

b,i ]T (4)

xnb,j = [xn+1
b,j , xn+2

b,j , · · · , xn+T2

b,j ]T (5)



Having randomly selected S pairs of waves, we compute
a correlation coefficient for each. We define the correlation
coefficient rm,nb,i,j relating the waves of short period xmb,i and
xnb,j as

rm,nb,i,j =
cov(xmb,i,x

n
b,j)√

cov(xmb,i,x
m
b,i)cov(x

n
b,j ,x

n
b,j)

(6)

where cov() represents the covariance computed among these
waves of short periods. The correlation coefficient uses the
range of values −1 ≤ rm,ni,j ≤ 1.

To generate the feature vector for classification, we compute
the distribution of the correlation coefficients. We define a
feature vector: the band correlation histogram within the
channel hb. We compute hb to temporally compare the waves
at the same channel as

hb =

N∑
i=1

[h1b , h
2
b , · · · , hDb ]T (7)

where D is the number of bins in the histogram and hlb is the
frequency of the l-th bin. We count frequency hlb using rm,nb,i,j

as

hlb = card{rm,nb,i,j |al ≤ r
m,n
b,i,j < al+1} (8)

where card is an operator representing the number of elements
in a set consisting of rm,nb,i,j under al ≤ rm,nb,i,j < al+1. Note that
al = −1 + 2(l − 1)/D. When rm,nb,i,j = 1, we count it in hDb .
The total number of pairs of waves of short period is NS. We
apply L1-norm normalization for ||hb|| = 1.

IV. EXPERIMENTS

A. Dataset of EEG waves of AESD and FS

To evaluate the classification performance of our method,
we collected EEG data from 34 infant patients (22 males, 12
females; average age 1.7± 1.4 years). Seventeen patients had
AESD and the other half had FS. When measuring EEG waves,
the patients were comatose or in deep sleep. The setup of the
channels and electrodes for the EEG readings is shown in
Figure 1. The number of channels was N = 10. The doctor
selected 10 epochs for each patient. The length of an epoch
was T1 = 15 s and the sampling interval was 10 ms.

B. Parameters of the band correlation histogram

We used 17-fold cross-validation. Data for two patients were
used as test samples and those for the remaining 32 as training
samples. We used the liner support vector machine [13], and
compared classification performance in terms of the methods
determining whether patients were suffering from AESD or
FS using the band correlation histogram. We conducted our
evaluations with frequency bands for b = δ, θ, α, and β waves,
and number of bins D = 5, 10, and 20, and waves of periods
T2 = 0.5, 1, 2, and 3.5. We randomly sampled S = 1, 000
pairs of waves of short period.

Figure 4 shows the classification performance of the band
correlation histogram while changing the frequency band.
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Fig. 4. Classification performance of band correlation histogram while
changing the frequency bands.
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Fig. 5. Classification performance of band correlation histograms using δ
waves while changing the number of bins D.

We calculated the average and the standard deviation of the
number of patients correctly classified by fixing a certain
parameter and changing the others. We used Bonferroni’s
method for multiple tests. We also used the Wilcoxon signed-
rank test (p < 0.01 : ∗∗). We can see that δ waves yielded
better performance than θ,α and β waves. Figure 5 shows
the classification performance of the methods using the band
correlation histogram using δ waves while changing the num-
ber of bins D and Figure 6 shows classification performance
using δ waves while changing the duration of waves. We can
see that D = 10 yielded better performance than D = 20, and
T2 = 1 yielded better performance than T2 = 0.5, 2, and 3.5.
We obtained the best performance (21 patients were correctly
classified) using the correlation histogram of θ waves with
D = 10 and T2 = 2, or D = 20 and T2 = 3.5.

C. Comparison with methods that spatially compute the cor-
relation coefficient

We compared the proposed method with an inter-channel
method that spatially compares waves at the same time, and a
random method that spatially compares them at different times.
The proposed method used feature vector hδ with D = 10 and
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Fig. 6. Classification performance of band correlation histograms using δ
waves while changing the duration of waves.

Ours Inter-channel Random
10

22

**
**

N
u

m
b

er
 o

f 
co

rr
ec

tl
y 

cl
as

si
fi

ed
 p

at
ie

n
ts

Methods used to compute the correlation coefficient

Fig. 7. Classification performance of the band correlation histogram using the
three methods on δ waves. The inter-channel method spatially compares waves
at the same time. The random method spatially compares them at different
times.

T2 = 1. All three methods used the linear SVM classifier. We
used the same dataset as described in Section IV-B. Figure 7
shows the classification performance of band correlation his-
tograms using the three methods on δ waves. We see that the
proposed method yielded better performance than the inter-
channel method and the random method. As described in
Section III-A, an expert doctor checked to whether similar δ
waves (0.5−4 Hz) appear temporally. We think that the feature
vector of the proposed method generated by comparing waves
of short periods benefited from knowledge of the diagnosis of
AESD.

D. Comparison with prevalent method

We compared the proposed method with a method prevalent
in practice [5] using the five elements of the cross-correlation
(peak value, instant at which peak occurs, centroid, equivalent
width, mean square abscissa) computed from the EEG waves
between channels. The prevalent method used a feature vector
of 5 × 45 = 225 dimensions by computing the five elements
between 10C2 = 45 combinations of channels. Our method

used the feature vector described in Section IV-C. Both
methods used a linear SVM classifier. We used the same
dataset as described in Section IV-B. Our method correctly
classified 20 patients whereas the prevalent method classified
only 18 correctly. Thus, our method improved classification
performance compared with the prevalent method. We thus
think that it can help correctly diagnose AESD. The prevalent
method directly applied cross-correlation to the EEG waves.
On the contrary, our method applied correlation to waves of
short period selected from the EEG waves. An expert doctor
cannot observe the EEG waves all at once. We think that the
band correlation histogram generated by waves of short period
benefited from knowledge of the diagnosis of AESD.

E. Visualization

We investigated the bins of the band correlation histogram
that contributed to enhancing the classification performance
of AESD. We used the parameters of the feature described
in Section IV-C. Figures 8 (a), (b), and (c) show the band
correlation histograms using δ waves for AESD and (d),
(e), and (f) show those for FS. As shown in Figure 8, the
frequencies of the bins for AESD representing the correlation
coefficients −1 or 1 were higher than those for zero in the
δ waves. Figures 9 (a) and (b) show the weights using the
normal vector to the hyperplane of the linear SVM classifier.
The positive weights were discriminative in classifying AESD
and the negative weights in classifying FS. We see that the
weights −1 and 1 took large positive values in δ waves. We
think that the pairs of waves taking −1 or 1 as coefficients
contained discriminative features in δ waves.

F. Evaluation using a control group

We evaluated classification performance on a control group
of healthy infants and another consisting of those suffering
from encephalopathy. The former consisted of patients who
had been cured of FS and shuddering attacks, or were origi-
nally healthy. The other group contained infants suffering from
epilepsy (ES). We added 18 healthy infants (10 males, eight
females; average age, 8.4 ± 2.3 years), 11 cured infants (six
males, five females; average age, 3.3±2.9 years), and six other
encephalopathy patients (three males, three females; average
age, 2.8 ± 2.0 years) to the dataset described in IV-A. The
doctor measured the EEG waves using the same setup as in
Figure 1. The EEG waves of the added infants did not yield
abnormal findings. The doctor selected an epoch containing
normal, slow waves of sleep. We used data for 52 patients
in total: data for 34 patients (17 AESD patients, nine healthy
patients, six cured infants, and two ES patients) as the training
sample and those for 18 (nine healthy patients, five cured
infants, and four ES patients) as test sample. We generated
feature vectors and a classifier in the manner described in
Section IV-C. We calculated the average and standard devia-
tion of the number of patients correctly classified by changing
the epochs selected. Iterated 10 times, our method correctly
classified 14.0±0.0 test patients. We thus think that our feature
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can help identify patients with AESD with the likelihood of
progressing to severe sequela.

V. CONCLUSION

In this study, we proposed a method for identifying AESD
among infants suffering from acute encephalopathy using a
band correlation histogram. Our method computes the dis-
tribution of the correlation coefficients of EEG waves taken
over a short period in frequency bands based on the doc-
tor’s knowledge of the diagnosis. We also showed that our
method can improve classification performance compared with
a prevalent method by conducting evaluations on a dataset of
infant patients with acute encephalopathy.

In future work, we intend to evaluate classification perfor-
mance with a greater number of the patients and conduct a user
study involving doctors who are not experienced in treating
AESD.
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