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ABSTRACT

We propose a method for jointly performing object recogni-
tion and pose estimation using training samples of canonical
planes to reduce the effort of data label supervision. Collect-
ing a sufficient number of training samples is important to re-
alizing high performance. However, labeling pose parameters
is time consuming. We thus train our network model using
only object class labels without explicitly labeling pose pa-
rameters. To recognize objects and estimate their poses, we
design a network with a spatial transformer in a contrastive
learning manner such that the canonical plane of an object is
always transformed to a certain pose and the features are con-
sistent with those of the object class. Experiments show that
our method has improved accuracy in object recognition and
lower error in pose estimation compared with simply using
triplet learning or a spatial transformer network on a publicly
available dataset.

Index Terms— Weak supervision, Canonical plane,
Triplet learning, Spatial transformer networks

1. INTRODUCTION

There is a demand for robotic arm systems [1, 2] that are au-
tomatically able to pick and stow various objects in a ware-
house. Grasping an object with a robotic arm requires two
types of computer vision technique, namely object recogni-
tion, and pose estimation. In the field of the automatic ware-
house, there are already many applications that adopt object
recognition techniques [3, 4]. Existing methods [5, 6] that
perform object recognition and pose estimation simultane-
ously have recently attracted attention. The existing meth-
ods perform well when many training samples with object
class labels and pose parameter labels are collected. How-
ever, labeling pose parameters to manage training samples
is time consuming and subjective. Weakly supervised learn-
ing methods that jointly perform object recognition and pose
estimation are thus expected. Recent papers [7, 8] tackled
the development of the weakly supervised learning method.
Kanezaki et al. [7] assumed that object poses are categorized
into several viewpoints and multiple images are available in
the test process. Sundermeyer et al. [8] assumed that three-

dimensional models of objects are available for training sam-
ples. We instead focus on achieving the goal without making
such assumptions.

Before we consider a weakly supervised learning method,
we discuss major existing methods of object recognition
using triplet learning [9] and spatial transformer networks
(STNs) [10]. As described in [11, 12, 13, 14], triplet learning
has achieved high accuracy of object recognition in various
applications. Triplet learning is used to extract invariant deep
features when there is a variation in appearance due to pose
changes. When training a network model, the triplet loss
function decreases the distance between an anchor image
(simply referred to as an anchor) and positive image (sim-
ply referred to as a positive), while increasing the distance
between the anchor and negative. In contrast to triplet learn-
ing, the STN infers parameters of spatial transformation to
increase the accuracy of object recognition without the use of
pose parameter labels for training. After applying a spatial
transformation to deep feature maps using the inferred the
parameters, the STN increases the tolerance to pose changes
in the recognition task.

The present paper designs a novel network model by em-
bedding an STN module in triplet learning to jointly perform
object recognition and pose estimation. We do not use pose
parameter labels to train our network model. We perform
weakly supervised learning for object recognition and pose
estimation using only RGB images with object class labels.
A straightforward idea would be to first train the network in-
cluding an STN module with a standard triple learning, ex-
tract deep features for object recognition, and infer the pose
parameters using the STN for pose estimation. However, such
a simple combination does not work well for the following
reasons.

• An STN is often implemented to alleviate the variation
of pose changes through planar spatial transformations.
However, we cannot simply use an STN module be-
cause the objects have three-dimensional shapes.

• The anchor of triplet learning dynamically affects the
accuracy of pose estimation and object recognition. A
criterion for selecting anchors that are beneficial to both
has not been investigated.
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Fig. 1. Our network model using triplet learning of canonical
plane transformation. Function s( ) synthesizes an image by
removing pose changes using the STN. Function c( ) gener-
ates a feature map from an image using a convolutional neural
network and vectorizes the feature map.

• The triplet loss function is designed to increase the ac-
curacy of object recognition. It does not explicitly re-
duce the error in pose estimation.

We exploit the following strategy to overcome these issues.

• We consider how to use an STN module while main-
taining a planar spatial transformation for our task. We
introduce canonical planes of a three-dimensional ob-
ject. Generally, an object is approximately represented
by a large number of planes. We assume that an object
comprises a very small number of canonical planes.

• We believe that a good anchor in triplet learning for
both object recognition and pose estimation is an im-
age that well describes the cues of an object. To se-
lect anchor images, we acquire representative canonical
planes that are less affected by pose changes.

• We add a loss term to smoothly connect from the STN
to triplet loss. Pose estimation using an STN is geo-
metrically possible when the anchor and positive ap-
pear similar after applying the STN. Our method thus
computes the L1 loss between the anchor and positive
for a triplet loss function.

In experiments, our method improved the accuracy of ob-
ject recognition from 90% to 95% compared with an exist-
ing triplet learning method while reducing the error of pose
estimation from 1.1 to 0.4 compared with an existing STN
method on the Rutgers APC RGB-D dataset.

2. TRIPLET LEARNING OF CANONICAL PLANE

TRANSFORMATION

2.1. Overview

Figure 1 illustrates our network model of canonical plane
transformation. In the figure, Ip represents the image of the
positive for triplet learning, Ia the image of the anchor, and
In the image of the negative. The triplet of the positive,
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Fig. 2. Examples of observed canonical planes.

Approximation

Planer Rectangular Cylinder

Fig. 3. Examples of three categories of object shape.

anchor, and negative corresponds to canonical planes of ob-
jects. The positive belongs to the same object as the anchor
while the negative belongs to a different object. We set the
L1 loss between Ia and s(Ip) to evaluate the closeness of
the anchor and positive when applying the STN. Our method
computes the triplet loss using vectorized feature maps of the
anchor, positive, and negative. Note that our method shares
the same weights of c( ) and s( ) for the anchor, positive,
and negative streams. In the test process, we prepare target
samples of representative canonical planes. Given a query
sample, our method infers relative spatial parameters of pose
change from the query sample to a target sample. Our method
also extracts deep features for object recognition. Canonical
planes, anchors, and the L1 loss are respectively described in
Sections 2.2, 2.3, and 2.4.

2.2. Canonical planes

Objects in a warehouse are often packed into a textured box
or bag so as to prevent their deformation. We assume that
the objects consist of a plurality of canonical planes. When
an object is placed on a floor, the pose of the object does not
continue to change. The pose settles into a static state, as
shown in Figure 2(a). The object pose is thus not free to shift
in all directions, and there is a bias to a specific direction.
In other words, one surface is observed mainly for each ob-
ject, such as in Figure 2(b). We term the surface a canonical
plane. The number of canonical planes depends on the shape
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Fig. 4. Setting for acquiring anchor images.

of the object as illustrated in Figure 3. We assume that two
canonical planes are observed for a planar object, six canoni-
cal planes are observed for a rectangular object, and 10 canon-
ical planes are observed for a cylinder approximated as an oc-
tagonal prism. Using canonical planes, our method estimates
the object pose through a simple STN module implemented
for the planar object.

2.3. Anchor for triplet learning

To improve the accuracy of object recognition and reduce the
error of pose estimation, we acquire an anchor image in which
a representative canonical plane well expresses a cue of an ob-
ject. We collect representative canonical planes in the setting
as illustrated in Figure 4(a). We set up the camera so that its
optical axis is perpendicular to the floor. We place the ob-
ject parallel to the floor surface. We let the optical axis of the
camera pass through the object center of gravity. Figure 4(b)
shows examples of anchor images for representative canoni-
cal planes.

2.4. L1 loss for pose estimation

To jointly perform object recognition and pose estimation, we
use a loss function for our network model expressed as

L = Lt + �Ls, (1)

where Lt is the triplet loss term for object recognition and Ls

is the L1 loss term for pose estimation. To evaluate the dis-
tance between the appearances of canonical planes in images,
we define Ls as

Ls = ||Ia � s(Ip)||1. (2)

The equation returns a small value when taking similar ap-
pearances between the image of the anchor and the image of
the positive after applying the STN. After learning, the STN
tries to linearly transform the query image of an arbitrary ob-
ject pose so as to match the anchor image, where the resulting
transformation parameters inferred by the STN gives the pose
parameters of the object.

Yellow :	Planar,			Red	: Rectangular,			Blue :	Cylinder

Fig. 5. Objects used in our experiments.

To evaluate the distance between vectorized feature maps
in triplet learning, we define Lt as

Lt = max(||c(Ia)� c(s(Ip))||22�
||c(Ia)� c(s(In))||22 +m, 0),

(3)

where m is the margin. The equation returns a small value
when the anchor and positive feature vectors of the same ob-
ject are close while the anchor and negative feature vectors
of different objects are not close. Object recognition can be
performed through nearest-neighbor classification.

3. EXPERIMENTS

3.1. Dataset

To evaluate the accuracy of object recognition and the error of
pose estimation, we used three-dimensional mesh models of
17 objects included in the Rutgers APC RGB-D dataset [15].
Figure 5 shows examples of the objects. We generated pos-
itive samples of triplet learning by applying an affine trans-
formation to the same object as in the anchor, and negative
samples by applying an affine transformation to different ob-
jects. We randomly set the parameters of affine transforma-
tion in the range of translation of [�50, 50] pixels, range of
rotation of [�60, 60] degrees, and range of scale of [0.8, 1.2].
We used anchor images as target samples in the test process.
We randomly generated query samples in the same manner as
the generation of training samples. We used 10,000 training
triplet samples, 1000 query samples, and 90 target samples.
The size of each sample was 100 ⇥ 100 pixels. We repeated
the procedure nine times.

In triplet learning, we computed 128-dimensional fea-
ture vectors using two convolutional layers, one max pooling
layer, and one global max pooling layer. In the STN, we used
a regressor having two convolutional layers, two max pooling
layers, and two fully connected layers.

We used the correct-match rate to evaluate the accuracy
of object recognition. We used the Frobenius norm between
the inferred affine matrix and labeled affine matrix to evaluate
the error in pose estimation.
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Fig. 6. Accuracy of object recognition and the error in pose
estimation for a varying parameter �.
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Fig. 7. Examples of query samples after removing pose
changes.

3.2. Basic performance

We evaluated the performance of our method while changing
the parameter � in Equation (1). We set � =0, 1, 10, 100.
Note that � = 0 refers to the baseline method where the STN
is simply set in triplet learning without the use of Ls.

Figure 6 shows the average matching rate of object recog-
nition and the average Frobenius norm of pose estimation.
We see that the performances for � = 1, 10 were superior
to the performance for � = 0. We confirmed that Ls for our
method works well in terms of increasing the accuracy of ob-
ject recognition and reducing the error in pose estimation. We
obtained high performance when � = 10.

Figure 7 shows examples of the target samples, and the
query samples after passing through the STN module. We see
that the samples modified using the baseline method have al-
most the same appearances as the query images. Meanwhile,
we see that the images obtained using our method are close
to the target samples. We believe that Ls plays an important

role in correctly estimating relative spatial parameters and re-
moving the effects of pose changes.

3.3. Comparisons with existing methods

We compared the performance of our method with that of an
existing triplet learning method [9]. We used a triplet net-
work by removing the STN s( ) and L1 loss term Ls from our
network. We only evaluated the accuracy of object recogni-
tion because the triplet network was unable to estimate object
poses. The average accuracy achieved using the triplet net-
work is 90.2 ± 1.5 whereas the accuracy of our method is
95.1± 1.1. We confirmed that our network combining triplet
learning with an STN using the L1 loss is superior to the sim-
ple triplet network.

We next compared the performance of our method with
that of an existing STN method [10]. We combined a recog-
nition module with the STN module used in our network.
The recognition module has two convolutional layers, two
max pooling layers, and two fully connected layers. We used
cross-entropy loss in the existing method. We evaluated the
accuracy of object recognition and the error in pose estima-
tion. The average accuracy and error when using the existing
STN method are 92.2± 4.4 and 1.09± 0.44 whereas the ac-
curacy and error when using our method are 95.1 ± 1.1 and
0.44 ± 0.02. We confirmed that our method embedding an
STN module in triplet learning is superior to the existing STN
method.

3.4. Comparison with the random selection of anchors

As described in Section 2.3, our method selects anchor im-
ages by acquiring representative canonical planes. We here
compare the performance of our method with that of the ran-
dom selection of anchors. The average accuracy and error
when using the random selection are 89.1 ± 1.1 and 0.82 ±
0.02 whereas the average accuracy and error when using our
method are 95.1 ± 1.1 and 0.44 ± 0.02. We confirmed that
the acquisition of representative canonical planes is effective
in terms of improving the performance of object recognition
and pose estimation.

4. CONCLUSIONS

We proposed a weakly supervised learning method to jointly
recognize objects and estimate their poses through the triplet
learning of canonical plane transformation. We demonstrated
that our method outperforms the single use of triplet learning
or the STN even though we did not provide pose parameter
labels.

In future work, we will further evaluate our method on
datasets of objects having various shapes. We will also ex-
plore the use of homography transformation instead of affine
transformation to treat pose changes that are more complex.
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