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Abstract. In this paper, we investigate the number of training sam-
ples required for deep learning techniques to achieve better accuracy of
inspection than a human on a simple visual inspection task. We also ex-
amine whether there are differences in terms of finding anomalies when
deep learning techniques outperform human subjects. To this end, we
design a simple task that can be performed by non-experts. It required
that participants distinguish between normal and anomalous symbols
in images. We automatically generated a large number of training sam-
ples containing normal and anomalous symbols in the task. The results
show that the deep learning techniques required several thousand train-
ing samples to detect the locations of the anomalous symbols and tens
of thousands to divide these symbols into segments. We also confirmed
that deep learning techniques have both advantages and disadvantages
in the task of identifying anomalies compared with humans.
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1 Introduction

In recent years, the automation of the manufacturing industry has been pro-
moted to mitigate labor shortage [12, 1, 2, 6]. We focus here on visual inspection,
of the various tasks performed manually by workers in a factory. Visual inspec-
tion is the task of finding such anomalies in products as scratches, dents, and
deformations on a manufacturing line. Deep learning techniques [14, 9, 5, 13, 18]
are widely used to automate visual inspection, and have achieved better per-
formance than humans on various applications, such as object recognition [8, 4]
and sketch search [19].

Network models of deep learning techniques to automatically predict anoma-
lies are generated using training samples. To improve the accuracy of inspection
using deep learning techniques, we need to prepare a large number of training
samples containing stimulus images and labels indicating the presence or ab-
sence of anomalies. However, it is laborious to correctly assign anomaly-related
labels to the stimulus images because the labels are manually assigned by experts
through visual inspection. Furthermore, the number of these experts is small.
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In this paper, we consider a simple task where non-experts can assign anomaly-
related labels. We design the simple task based on properties of the visual in-
spection of manufacturing lines. A minority of the stimulus images contained
anomalies while the majority were normal. Some of these anomalies were easy
to find whereas others were more challenging. In experiments using the simple
task, we investigated the number of training samples needed for deep learning
techniques to deliver higher accuracy than humans. To this end, we automati-
cally generated labels indicating anomalies in stimulus images used for the simple
task. We compared the accuracy of inspection of human subjects with that of
deep learning techniques. This study is the first step in investigating knowledge
we can obtain from a comparison of accuracy between humans and the deep
learning techniques. While the simple task cannot comprehensively represent vi-
sual inspection by experts, we think that this study can provide new guidelines
on data collection for deep learning techniques, especially manually assigning
labels through the interaction between people and information systems.

The remainder of this paper is organized as follows: Section 2 describes the
detail of the simple task considered here, and Section 3 presents the accuracy of
inspection of human subjects. Section 4 presents the accuracy of inspection of
deep learning techniques, and Section 5 contains our concluding remarks.

2 Design of the simple task

2.1 Overview

To design the simple task of visual inspection that non-experts can perform, we
consider the property of a general task of visual inspection at a factory. In this
task, the worker manually determines the presence or absence of anomalies, such
as scratches, dents, or deformations, by observing products on a manufacturing
line. We assume that a certain surface of a product has many symbols arranged
in a grid. The simple task is to check the symbols to determine whether there
are anomalies. A label indicating an anomaly means that part of the symbol is
defected. We call the symbol pattern on the grid the stimulus image. We assume
that the position where the symbol is placed on the grid is fixed but rotation
is not. Figure 1 shows an example of the simple task. Details of the stimulus
images of the simple task are described below.

2.2 Generation of stimulus images

We set 8 × 4 = 32 symbols on a grid in a stimulus image. To generate an
anomalous symbol, we altered part of a normal symbol. A stimulus image is
generated by the following steps:

S1: We randomly set the maximum number of anomalous symbols to zero, two,
four, and six in a stimulus image. Note that zero means that all symbols are
normal. Six anomalies are determined by considering the relationship among
the numbers 4± 1 [3] and 7± 2 [10] of the short-term memories of people.
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Fig. 1. Overview of the simple task of visual inspection by non-experts.
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Fig. 2. Examples of the parameters used to generate anomalous symbols. We show the
suits in (a), the defective positions in (b), and the rate of defect in (c).

S2: We determine the parameters of a given suit, rate of defect, defective posi-
tion, and angle of rotation to generate an anomalous or a normal symbol.

– We randomly select a suit from among club, spade, diamond, and heart.
Figure 2(a) shows examples of the suits.

– We randomly determine whether the given symbol is defected. Note that
a symbol is not defective when the given number of anomalous symbols
is the maximum determined in S1.

– We set the rate of defect and the defective position to generate the
anomalous symbol.

• We randomly set the position from among top, bottom, left, and
right. Figure 2(b) shows examples of defective positions.

• We randomly set the rate of defect to 4%, 8%, 12%, or 16%. Fig-
ure 2(c) shows examples of the rate of defect.
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Fig. 3. Examples of stimulus images. The red circles indicate the locations of anomalous
symbols.
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Fig. 4. Setting of the simple task for the participants.

– We randomly set the angle of rotation in the range −180–180 degrees in
steps of 1 degree.

S3: We generate an anomalous or a normal symbol using the parameters deter-
mined in the above steps.

S4: We place the generated symbol at an intersection on the grid.

S5: We repeat S2, S3, and S4 until the number of symbols in the stimulus image
is smaller than or equal to 4× 8 = 32.

Figure 3(a) shows examples of the generated stimulus images and (b) shows
locations of anomalous symbols in them. There is a small possibility that the
same stimulus images reappear because the total number of variations in stimulus
images is 2.3× 1021. We calculated inspection accuracy on the simple task using
the generated stimulus images. Section 3 describes the accuracy of inspection
of human subjects and Section 4 describes that of the deep learning techniques
used.

3 Inspection accuracy of human participants

3.1 Setting

We investigated the accuracy of visual inspection of non-experts on the simple
task. Twenty people (15 males, five females, average age, 22.2± 1.0 years, grad-
uate school students) participated in the study. Figure 4 shows the settings of
the simple task performed by the participants in a dark room. The intensity of
light in the dark room was 360± 5 lx. A participant sat in a chair in a comfort-
able posture. We used 24-inch display (AOC G2460PF 24) with a resolution off
1920× 1080 pixels to show the stimulus image. We measured the gaze locations
of the participant using a standing eye tracker (Gazepoint GP3 Eye Tracker,
sampling rate 60 Hz)because gaze has a potential capability to increase the ac-
curacy of various recognition tasks[16, 7, 11, 17]. To record anomalous symbols
found by the participant, a pen tablet (Wacom Cintiq Pro 16) was used.
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3.2 Experimental procedures

We asked the participants to perform the simple visual inspection task using the
following procedure:

P1: We randomly selected a participant.
P2: We explained the experiment to the participant.
P3: The participant performed visual inspection using a stimulus image on the

display. We simultaneously measured the gaze locations of the participant.
P4: The participant recorded locations of anomalous symbols on the pen tablet

by marking them.
P5: We repeated P3 and P4 until all 12 stimulus images had been examined by

the participant.
P6: We repeated P1 to P5 until all 20 participants had finished the simple task.

The details of P2, P3, and P4 are described blow.

P2: Explanation of the instruction We explained to the participants the rule
of the simple task, the procedure of gaze measurement, and how to use the pen
tablet for marking the symbols. In this procedure, the participant was allowed to
practice simple visual inspection task. Once the participant had completed the
example task, we informed them of the correct answers for the locations of the
anomalous symbols. Note that we did not provide the answers to the participants
in the procedures below.

P3: Visual inspection for measuring gaze locations The participants per-
formed the simple visual inspection task by viewing a stimulus image on the
display. Figure 5 illustrates the procedure of P3. We guided the initial gaze of
the participant before he/she viewed the stimulus image by inserting blank im-
age 1, containing a fixation point, on the center of the image. The blank image
1 was shown for two seconds. We then showed a stimulus image on the display
for 30 seconds, which was considered sufficient time for the participant to check
all symbols. We measured the gaze locations of the participants while they ob-
served the stimulus image. We showed blank image 2 to the participant for five
seconds after he/she had completed the task. While the participant was viewing
the stimulus image on the display, we turned off the pen tablet.

P4: Marking anomalous symbols Each participant indicated the locations
of the anomalous symbols by marking symbols on the pen tablet. We showed
the same stimulus image displayed in P3 on the pen tablet. The participant
circled anomalous symbols using a pen. Figure 6 shows examples of the circled
symbols. While the participant was marking symbols in the stimulus image, we
turned off the display. We embedded an eraser function in case the participant
accidentally circled something and wanted to remove it. The maximum time
allowed for marking anomalous symbols was 30 seconds. As soon as the marking
had been finished, we moved to the next procedure.
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1. Show the blank image 1
for two seconds.

2. Show the stimulus image 
for 30 seconds and measure
the gaze locations of the 
participant.

3. Show the blank image 2 
for five seconds.

Fig. 5. Procedure of the participant in P3 viewing the stimulus image.

Fig. 6. Examples of symbols circled by the participants in the marking procedure.

3.3 Results

Table 1 shows the F-measure, precision, recall, and accuracy of the simple task
performed by the participants. Precision was high at 0.97, and the participants
rarely made a mistake in identifying a normal symbol as an anomalous symbol.
On the contrary, the recall rate was 0.85, indicating that the participants had
missed a large number of anomalous symbols when identifying them.

To check for anomalous symbols that had been incorrectly identified as nor-
mal symbols, we calculated the recall rate of each parameter used to generate
the symbols. Figure 7(a) shows the recall rate of each suit, (b) shows that of
each defective position, and (c) shows the recall rate for each rate of defect. We
used Bonferroni’s method as a multiple comparison test. There was no significant
difference among suits in (a). We thus cannot claim that the suit influenced the
inspection accuracy of the participants. However, there was a significant differ-
ence between the results of defective positions for the bottom and top, bottom
and left, and bottom and right in (b). Significant differences were also observed
between the results of rates of defect for 4% and 8%, 4% and 12%, 4% and 16%,
and 8% and 16% in (c). Thus, the participants frequently missed the anomalous
symbols in the downward defective position and those with a low rate of defects.
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Table 1. The inspection accuracy of participants on the simple task.

F-measure Precision Recall Accuracy
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Fig. 7. Recall rates of the participants by suit, defective position, and the rate of
defects.

3.4 Analysis of gaze locations of the participants

We analyzed gaze locations while the participants performed the simple visual
inspection task by recording the duration of gaze fixation of all participants.
Figure 8 shows heatmaps of the duration of fixation and inspection accuracy on
stimulus images of the simple task. In the heatmap, a deeper red means longer
gaze fixation. In the heatmap of inspection accuracy, a deeper red indicates
better performance. The results are summarized below.

– Gazes of the participants lingered around anomalous symbols for a longer
time than on normal symbols.

– Certain anomalous symbols on which the participants recorded low accu-
racy featured long durations when their gazes were fixed. We think that the
participants could simply not decide whether the given symbol contained
anomalies.
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Fig. 8. Heatmaps of the duration of fixation and inspection accuracy on the stimulus
images of the simple task.
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Fig. 9. Examples of outputs predicted using the SSD.

– Normal symbols with high accuracy of recognition featured a short duration
of fixed gazes. We think that in these cases, the participants quickly judged
that there were no anomalies.

4 Inspection accuracy of deep learning techniques

4.1 Overview

We investigated the inspection accuracy of representative deep learning techniques—
the single-shot multibox detector (SSD) [9] and U-Net [14]—on the simple task.
SSD was designed for localization tasks and U-Net for segmentation task. To
prepare a large number of training samples for the deep learning techniques, we
used the stimulus images and labels generated by the steps described in Sec-
tion 2.2. The results of the SSD are described in Section 4.2 and those of U- Net
in Section 4.3.

4.2 Visual inspection using SSD

Experimental conditions We used bounding boxes of the anomalous symbols
as labels to train the SSD model to predict their locations in the stimulus image.
Figure 9 shows examples of the outputs predicted by the SSD. We used the
VGG16 model [15] for the base network of the SSD. A total of 2,500 to 10,000
samples were prepared. For the test samples, we generated 1,000 stimulus images
that were not used for training samples of the SSD. We repeated these procedures
three times to evaluate inspection accuracy.

Inspection accuracy of SSD Figure 10(a) shows the F-measure of the sim-
ple task using the SSD for different numbers of training samples. Bonferroni’s
method was used as a multiple test. There was a significant difference in the
results between 2,500 and 5000, 2,500 and 7,500, and 2,500 and 10,000 samples.
We confirmed that the inspection accuracy using the SSD was satisfactory when
the number of training samples was more than or equal to 5,000. We also con-
firmed that the accuracy of the SSD of 0.95 was superior than that of the human
participants of 0.91 when using 5,000 training samples.
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Fig. 10. Inspection accuracy using the SSD on the simple task.

Figures 10(b), (c), and (d) show the recall rates for the suits, defective posi-
tions, and the rate of defects. There was a significant difference between diamond
and club, diamond and spade, and diamond and heart in (b). The SSD did not
perform well on diamond. On the contrary, there was no significant difference
among the defective positions in (c). Furthermore, there was a significant dif-
ference between 4% and 8%, 4% and 12%, and 4% and 16% in (d). The SSD
performed poorly at a rate of defect of 4%.

4.3 Visual inspection using U-Net

Experimental conditions To train the U-Net model, we used label images
in which only anomalous symbols appeared. The model was trained to predict
segments of the only anomaly regions in the stimulus image. Figure 11 shows
examples of the outputs predicted by U-Net. We used nine downsampling layers
and nine upsampling layers, and used 5,000 to 20,000 training samples at inter-
vals of 5,000. For the test samples, we generated 1,000 stimulus images not used
as training samples of the U-Net model. We repeated these procedures three
times to evaluate inspection accuracies.

Inspection accuracy of U-Net Figure 12(a) shows the F-measure of U-Net on
the simple task for different numbers of training samples. Bonferroni’s method



12 N. Kato et al.

Fig. 11. Examples of outputs predicted using U-Net.

was used as multiple test. There was a significant difference in the results between
5,000 and 10,000, 5,000 and 15,000, and 5,000 and 20,000 samples. We confirmed
that inspection accuracy using U-Net was good when the number of training
samples was more than or equal to 10,000. We also confirmed that the accuracy
of U-Net of 0.94 was superior than that of the human participants of 0.91 when
using 15,000 training samples.

Figures 12(b), (c), and (d) show the recall rates by suit, defective position,
and the rate of defects. There was a significant difference between diamond and
club, and diamond and spade in (b). U-Net performed poorly on diamond. On
the contrary, there was no significant difference by defective position in (c), but
there was a significant difference between results for 4% and 8%, 4% and 12%,
and 4% and 16% in (d). U-Net performed poorly at a rate of defect of 4%.

4.4 Comparison with human participants

The participants as well as the deep learning techniques delivered poor results at
a small rate of defects. The participants were good at identifying defects in dia-
mond suit but the deep learning techniques were not. The participants performed
poorly at the downward defective position but the deep learning techniques were
good at this. To increase the inspection accuracy of the deep learning techniques,
several thousand stimulus images and labels are needed for the localization task
and tens of thousands for the segmentation task.

5 Conclusions

In this paper, we investigated and compared the inspection accuracy of humans
and deep learning techniques on a simple visual inspection task. The task con-
sisted of checking whether a symbolic pattern contained anomalies. Experimental
results revealed the number of training samples needed by deep learning tech-
niques to match or exceed the accuracy of human subjects. They also revealed
the differences in accuracies between humans and deep learning techniques. In
future work, we will expand our assessment to a long, more complex task to
represent the various practical applications of visual inspection.



Comparing the Recognition Accuracy of Humans and Deep Learning 13

**：p<.01

0.5

0.6

0.7

0.8

0.9

1.0
**

**
**

F-
m

ea
su

re

The number of training samples

(a)

5,000 10,000 15,000 20,000

**

0.5

0.6

0.7

0.8

0.9

1.0

Club Spade Diamond Heart

Suit 
(b)

**

R
ec

al
l

**：p<.01

0.5

0.6

0.7

0.8

0.9

1.0

(c)

Defective position

R
ec

al
l

**：p<.01

The rate of defect [%]

(d)

0.5

0.6

0.7

0.8

0.9

1.0

4 8 12 16

R
ec

al
l

**
**

**

Fig. 12. Inspection accuracy using U-Net on the simple task.
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