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Abstract. This paper proposes a method for pixel-based background
subtraction with improved gamma correction and a layered adaptive
background model (IGLABM). The main problems of background sub-
traction are background oscillation and shadow. To solve these problems,
we have proposed the gamma corrected layered adaptive background
model (GLABM), however the performance of GLABM is not sufficient
for real scenes. We hence improve the gamma estimation and prepos-
sessing step of GLABM in this study using the covariance matrix of
each pixel. We demonstrate the performance of the proposed improved
method by comparing it with GLABM and other pixel-based background
subtraction methods.

Keywords: Blind gamma correction - Background subtraction - Adap-
tive background model

1 Introduction

In recent years, given the drastic changes in our information-based society, it
is necessary to pay close attention to the public safety and security of society.
Against this social background, the security camera market has grown, and the
need for moving object detection has also grown. Moving object detection is an
important task in various practical security systems, such as person identification
and traffic monitoring.

Many studies for moving object detection have been performed, and this has
substantially improved detection accuracy. Object detection methods use var-
ious types of features, inter-frame differences, and background subtraction. In
particular, background subtraction is frequently used for its simplicity. However,
to deal with dynamic scene changes, background models should be adaptive to
changes at pixel, region, or frame level. To deal with dynamic scene changes,
we have previously proposed methods that employ adaptive background models
(ABMs)[1,2,4]. An ABM is a two-color reflection model for dynamic illumi-
nance changes and shadow removal[l]. The layered ABM (LABM) has multiple
ABMs for background oscillations such as waving leaves or fluttering flags[2].
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The gamma-corrected LABM (GLABM) adds gamma estimation to deal with
various images captured by unknown cameras[4]. However, the performance of
the gamma estimation implemented in the GLABM is not sufficient for use in
real scenes.

In this paper, we propose a method for pixel-based background subtraction
called the improved GLABM (IGLABM). The IGLABM method can deal with
image sequences containing dynamic scene changes such as illuminance changes,
waving leaves, or fluttering flags that were captured by an unknown camera.
We demonstrate the performance of the proposed method by comparing it with
other pixel-based background subtraction methods.

2 Related Work

As described in the previous section, many related methods have been pro-
posed[5], and background subtraction is often used for detecting moving ob-
jects. The simplest model uses the first frame as the background and subtracts
all subsequent frames, but this does not remove background oscillation. Lai and
Yung uses a weighted moving average over several temporal frames for the back-
ground model[6]. For background subtraction, the background model is the key
to success. There are many approaches for background modeling such as a sta-
tistical model[10], non-parametric model[7], fuzzy model[9], and low-rank sparse
decomposition[8].

One of successful approaches to background modeling is statistical modeling.
The distribution of pixels is frequently modeled as a univariate Gaussian, even
if the input images are in RGB color space[10]. Pixels in the background are
represented by six parameters: the sample mean and the standard deviation for
each color components. A single Gaussian model, however,is not able to handle
the background oscillation problem. Stauffer and Grimson proposed mixture of
Gaussian (MoG) models for the background[11] to solve this problem. Kawe-
TraKulPong and Bowden improved the update rules for the MoG model to solve
dynamic illumination changes[14].

Our approach to background modeling is also based on statistical modeling,
but our base model is the ABM[1], not a single Gaussian model. As described in
the previous section, the ABM has two univariate Gaussians to model sunlight
and ambient light (sky color), and LABM also has multiple layered ABMs, like
a MoG[2]. These properties enable us to handle the background oscillation and
remove shadows.

The implicit assumption of image processing is that the color space must be
linear RGB space. This is true for images captured by industrial cameras, but not
true for images captured by web or commercial cameras because these images are
gamma corrected. If the input color space is not a linear RGB color space, the
performance of background subtraction decreases. To solve this problem, many
methods for estimating gamma have also been proposed[15, 16]. We also tackled
this problem by adding a prepossessing stage for blind gamma estimation into
LABM[4].
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3 IGLABM

Before we explain the detail of IGLABM, we briefly explain the concept of ABM.
We assume a static camera capturing images of outdoor scenes.

3.1 ABM, adaptive background model[1]

The adaptive background model is a two-color reflection model of ambient light
and sunlight, which is similar to a dichromatic reflection model[3]. The pixel
value E(x,t) is given by the following equation:

E(z,t) = Lq(x,t) + Sa(z, t)La(z, 1), (1)

where L, and L, are the reflections of the ambient light and sunlight, respec-
tively. Moreover, Sq(x,t) represents the degree of brightness of the sunlight at
point @ at time ¢t and ranges from 0 to 1. Additionally, L, and Ly are assumed
to be Gaussian processes.

3.2 GLABM, gamma corrected layered adaptive background
model[4]

As described in the previous section, ABM can deal with dynamic illuminance
changes and shadow removals because of reflection parameter S;. However, the
ABM has two disadvantages, one is the color space and the other is background
oscillation such as waving of leaves or fluttering of flags. We have address these
problems using gamma estimation and a layered background model, respectively.
Hence, our method, GLABM, has a prepossessing step for gamma estimation and
a (multiple) layered ABM (LABM), as shown in Fig. 1.

In this paper, we improve the prepossessing step and gamma estimation step
of GLABM from the method in [4] and compare the performance of the proposed
method (IGLABM) with those of other existing methods. We explain the details
of IGLABM in the next section.

3.3 Proposed Method

Preprocessing for gamma estimation We use ABM for the background
model, so the color space of the input image must be linear RGB. We estimate
the gamma value of the input images, and then apply inverse gamma correction
to them. The true values of gamma are unknown because a camera setting
changes in various ways when recording or capturing images.

We evaluate the linearity of background pixels after inverse gamma correc-
tion and determine the best gamma value. For better estimation, we eliminate
foreground objects from the input images as much as possible. If these objects’
pixels are treated as background pixels, the linearity of the background pixels
decreases. We therefore first apply LABM to the input images I(x) and gener-
ate synthesized background images B(x) by replacing the foreground pixels with
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Fig. 1. Process flow of IGLABM

background pixels S(x) estimated by LABM. A synthesized background image
B(x) is expressed by the following equation:

[ I(x) if @ is foreground,
B(z) = {S(x) otherwise.

Gamma estimation We first estimate the gamma values of each pixel. We
calculate the covariance matrices of intensity at each pixel for a certain number
of frames after inverse gamma correction with various values in I', and then
estimate the linearity of each pixel from the eigenvalues of the corresponding
covariance matrix.

If the illuminance of each pixel is changed linearly in the direction of sunlight,
the most significant eigenvalue of the covariance matrix increases and other
eigenvalues decrease or even become zero. From this observation, to determine
the best gamma value, we use the index L, which is defined by the following
equation: \ \

2+ A3
L (II}) - /\1 )
where \; 2 3 denotes the eigenvalues of the covariance matrix at  in descending
order.
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The best gamma value Yg pest at « is determined by the following equation:

Y, best = Arg min L7
yel’

where I is a set of candidate values of 7. In this paper, we use I' = {7]0.5 < v < 2.5}.

When the gamma decreases, the input images becomes darker and the most
significant eigenvalue A; also decreases. Hence, the index L decreases and be-
comes unreliable when the gamma decreases. Therefore, we remove the outliers
of Y pest using A; < T4, where T} is the lower threshold of eigenvalue A;.

Moreover, if a pixel changes non-linearly, the volume of the covariance matrix
is larger and Ag 3 increases. Hence, the index L increases when a pixel changes
non-linearly. We must determine the pixels that change linearly, so the index
should be nearly zero. Therefore, we also remove the outliers of vz pest using
A1 > Ty, andL < T3, where T5 is the upper threshold of the eigenvalue A; and
the T3 is the threshold of the index L.

After removing the outliers, we estimate the gamma value s of the all
images by voting vz test into I' parameter space. We use the weighted mean as
Ypest Of the top N-th candidates in the voting I" parameter as the follows:

N
Z ;i
i—1

=
#I

>
K3

Yoest = (nl Z na Z o ')7

where n; is the number of votes, ; is the corresponding gamma value in I', and
#1I" is the number of elements in I'. In this paper, we use N = 5, #1[" = 21.

LABM Now that we have the estimated gamma value 7pes; for all input images,
we can apply an inverse gamma correction to the input images to obtain images
in linear RGB color space. Then, we extract foreground regions by using LABM,
which has multiple ABM layers. Each layer has a likelihood for the background
pixels, and is maintained in descending order of likelihood in the layer list. The
idea of a layer structure has been previously proposed[11]; however, our main
contribution is that we apply the concept to our ABM instead of a MoG model.
The system flow of LABM is depicted in Fig. 2

4 Experimental results

We evaluate the performance of the proposed method and compare the method
with existing pixel-based methods. We prepared our datasets “Tree” and “Flag,”
which were captured in linear RGB, where v = 1, to evaluate the performance
of gamma estimation. The Tree dataset contains background oscillation con-
sisting of waving of leaves and object shadows. The Flag dataset also contains
background oscillation consisting of a fluttering of a flag and object shadows.
Examples of these datasets are shown in Fig. 3.
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Fig. 3. Examples of the Tree and Flag datasets

We also used several image sequences collected from the benchmark datasets:
“CDW-2012"[12] and “PETS2001”[13]. We use “BusStation,” “Overpass,” “Foun-
tain02,” “Backdoor,” and “Canoe” from CDW-2012 for evaluation, because these
image sequences are outdoor scenes. In total, we use six datasets for experi-
ments. We also used “dataset3 testing cameral” of PETS2001, which is referred
as “PETS” in this paper.

4.1 Validity of background image synthesis

To evaluate the validity of synthesizing background images, we compare the
accuracy of gamma estimation on synthesized background images and input
images. We choose 100 images randomly from each dataset, and then applied
gamma correction to them from v = 0.5 to v = 2.5. The results of gamma
estimation are shown in Fig. 4. The horizontal axis is threshold value T3 of the
index L, and the vertical axis is the mean absolute error of gamma estimation.
The estimation gamma values change when the other thresholds 77 5 change.
The values of T in this experiment are 5, 10, 15, and 20. The values of T3 in
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Fig. 4. Accuracy of gamma estimation

this experiment are 100, 200, 300, 400, 500, and 1,000. The standard deviations
are also given in the figure.

The figure shows that the accuracy of gamma estimation using the syn-
thesized background is better than that of gamma estimation using the input
images. This is because the concept of our gamma estimation is based on the
linearity of illuminance changes. If a pixel of interest is background, in other
words, from a static object, the linearity is satisfied, but if the pixel is not from
a static object, the linearity is violated. This result indicates that our proposed
method requires the synthesized background images for better estimation.

Hereafter, we use the best parameter values, T3 = 10,75 = 200, and 75 = 0.1,
of this experiment for other experiments in this study.

4.2 Comparison of gamma estimation accuracy with existing
methods

We compare the accuracy of gamma estimation with other gamma estimation
methods: blind inverse gamma correction (BIGC)[15], and MV-Gammal[16], and
GLABM[4]. As shown in Table 1, the proposed method (IGLABM) achieves the
highest gamma estimation accuracy.

4.3 Performance comparison of background estimation with
existing methods

Next, we compare the performance of the proposed method with other pixel-
based background subtraction methods: MOG2[17] and MOG. MOG?2 is an im-
proved version of MOG, which chooses the number of the mixture adapted for
each pixel. We used the OpenCV library for MOG and MOG2.
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Table 1. Absolute estimation error of gamma values

Dataset  |[[GLABM GLABM MV-Gamma BIGC

Tree 0.00 0.18 0.30 2.14
Flag 0.10 0.41 0.50 0.36
PETS 0.09 0.20 0.30 1.69
BusStation| 0.30 0.03 0.20 1.07
Overpass 0.10 0.25 0.20 0.84
Fountain02| 0.38 0.72 0.50 0.53
Backdoor 0.07 0.57 0.40 0.55
Canoe 0.22 0.30 0.40 0.12
Average | 0.16 0.33 0.35 0.91

Table 2. Comparative analysis of F}-score

Dataset  [[GLABM GLABM LABM MOG MOG2

Tree 90.78 90.64 90.78 87.69 84.15
Flag 79.31 81.27 79.94 69.75 63.54
PETS 51.14 49.65 49.65 61.32 29.34

BusStation| 65.89 66.35 66.35 44.60 58.13
Overpass 66.38 64.06 60.24 48.80 51.89
Fountain02| 65.84 63.17 63.17 57.37 26.84
Backdoor 76.21 71.47 76.48 78.85 67.10
Canoe 82.00 79.30 82.17 44.90 56.45

Average ‘ 72.19 70.74 71.10 61.66 54.68

Examples of the estimation results for foreground detection in this experi-
ments are shown in Figs. 5 and 6. The results of IGLABM, GLABM, and LABM
are almost the same because the gamma value of Tree is 1.0 and the gamma es-
timation errors are small. MOG and MOG2 cannot remove shadows from the
foreground object, but LABM, GLABM, and IGLABM can remove shadows
clearly. MOG2 cannot remove background oscillation such as waving leaves per-
fectly, but other methods can remove the background oscillation.

We show the Fj-score of each method in Table 2. Here, the proposed method
also achieves the highest accuracy of all methods.

5 Conclusion

We proposed the IGLABM method for foreground detection based on pixel-wise
background subtraction with improved gamma correction and layered ABMs.
Gamma estimation is effective for pixel-wise subtraction but assumes a linear
RGB color space. The experimental results show that the performance of fore-
ground detection of IGLABM is superior to those of existing methods from the
experimental results. In future work, we will apply our method to various open
datasets to improve its performance and extend it to a block-based classification
method.
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Fig. 5. Examples of foreground detection results for Tree
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Ground truth
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Fig. 6. Examples of foreground detection results for Overpass
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