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ABSTRACT

We discuss how to reveal and use the gaze locations of observers who view pedestrian images for
personal attribute classification. Observers look at informative regions when attempting to classify the
attributes of pedestrians in images. Thus, we hypothesize that the regions in which observers’ gaze
locations are clustered will contain discriminative features for the classifiers of personal attributes. Our
method acquires the distribution of gaze locations from several observers while they perform the task
of manually classifying each personal attribute. We term this distribution a task-oriented gaze map. To
extract discriminative features, we assign large weights to the region with a cluster of gaze locations in
the task-oriented gaze map. In our experiments, observers mainly looked at different regions of body
parts when classifying each personal attribute. Furthermore, our experiments show that the gaze-based
feature extraction method significantly improved the performance of personal attribute classification
when combined with a convolutional neural network or metric learning technique.

1. Introduction

Personal attributes such as gender, clothing, and carried
items, which are of interest in the field of soft-biometrics [7,
27, 32, 6], help the collection of statistical data about people
in public spaces. Furthermore, personal attributes have many
potential applications, such as video surveillance and consumer
behavior analysis. In general, pedestrians captured on video
or in still images are used for personal attribute classifica-
tion. Researchers have proposed several methods for automat-
ically classifying personal attributes in pedestrian images; for
example, techniques involving convolutional neural networks
(CNNs) [30, 25, 29, 22] and metric learning [21, 41] have been
proposed. The existing methods can extract discriminative fea-
tures for personal attribute classification and obtain high accu-
racy when many training samples containing diverse pedestrian
images are acquired in advance. However, the collection of
a sufficient number of training samples is very time consum-
ing. Unfortunately, the performance of the existing methods
has been found to decrease when the number of training sam-
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ples is small.

People correctly and quickly classify personal attributes. We
believe that people have the visual ability to extract features
from an individual. For instance, people correctly classify gen-
der from facial images [3, 4]. In the research field of cognitive
science, Yarbus [38] reported that human observers can recog-
nize personal attributes in a scene image with high accuracy
when they are given different tasks such as remembering the
clothes worn by the individuals or estimating their ages. In this
interesting research, he noticed that the observers paid attention
to different regions in the scene when they tackled a different
task even though they viewed the same image. Recently, re-
searchers have made some efforts to analyze the role of task in
various applications [19, 14, 13]. Based on these observations,
we hypothesize that people pay attention to different informa-
tive regions in pedestrian images while tackling various tasks
of personal attribute classification.

It may be possible to reproduce human visual abilities via an
algorithm on a computer with a small number of training sam-
ples such that the classification performance is equivalent to
that of humans. With respect to object recognition, several ex-
isting methods for mimicking human visual abilities have been
proposed [33, 12, 40]. To mimic human visual ability, the exist-
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ing methods exploited a saliency map computed from low-level
features in a given image using techniques such as those de-
scribed in [17, 39, 42]. However, the use of the saliency map
does not sufficiently represent human visual abilities because of
the deep mechanisms of human vision.

An increasing number of pattern recognition studies, specif-
ically those attempting to mimic human visual ability, have
measured the gaze locations of observers [37, 11, 36, 31, 18].
These gaze locations have great potential for the collection of
informative features during various recognition tasks. Very re-
cently, state-of-the-art techniques [28, 26] have demonstrated
that gaze locations can help to extract informative features for
the attribute classification of fashion clothing and face images.
However, these existing methods do not consider how to treat
the case in which observers tackle different tasks for body at-
tributes in the same pedestrian image. We believe that the in-
formative region of the body for each classifier is significantly
different for each task of personal attribute classification.

In this paper, we consider the challenging case in which par-
ticipants in an experiment are given different tasks of personal
attribute classification while viewing the same pedestrian im-
ages. We confirm whether or not test participants look at dif-
ferent regions when tackling each task. We determine whether
or not the gaze locations measured from the participants play
an important role in the personal attribute classification. To
this end, we generated a task-oriented gaze map from the dis-
tribution of gaze locations recorded while participants viewed
images to complete each task of manually classifying personal
attributes. The high values in a task-oriented gaze map corre-
spond to regions that are frequently viewed by participants. We
assume that these regions contain discriminative features for
each classifier of a personal attribute because they appear to be
useful when the participants are tackling each task of personal
attribute classification. When extracting features to learn the
classifier, larger weights are given to the regions of the pedes-
trian images that correspond to the attention regions of the task-
oriented gaze maps. The experimental results indicate that our
method improves the accuracy of feature extraction when us-
ing a CNN or metric learning technique with a small number of
training samples.

This paper is organized as follows. Section 2 describes re-
lated work, Section 3 describes the generation of task-oriented
gaze maps, and Section 4 describes feature extraction using the
maps. Our concluding remarks are given in Section 5.

2. Related work

To mimic human visual ability, existing methods [33, 12, 40]
involve the saliency maps of object images with representations
of the regions that draw visual attention. Walther et al. [33]
combined a recognition algorithm with a saliency map gener-
ated from low-level features of gradients of color and intensity
using [17]. Researchers have developed techniques [12, 40] that
use the object labels of images in addition to the low-level fea-
tures of objects to generate saliency maps. Furthermore, exist-
ing methods [39, 42] add image boundary information in low-
level features to generate saliency maps with high accuracy.

However, the use of low-level features to generate a saliency
map does not sufficiently represent human visual abilities. Our
method exploits the use of gaze locations instead of a saliency
map to increase the performance of personal attribute classifi-
cation.

Existing methods [37, 11, 36, 31, 18] aim to design an al-
gorithm that is close to the human visual ability by measuring
gaze locations from observers. Xu et al. [37] generated saliency
maps of facial images using prior gaze locations from partici-
pants who viewed the images. They reported that the gener-
ated saliency maps represented high-level features correspond-
ing to the facial feature points of the eyes, nose, and mouth.
Furthermore, gaze locations are used in applications involv-
ing action recognition or image preference estimation. Fathi
et al. [11] classified actions by simultaneously inferring regions
where gaze locations were gathered via an egocentric camera.
Xu et al. [36] demonstrated that the use of gaze tracking in-
formation (such as fixation and saccade) significantly helps the
task of egocentric video summarization. Sugano et al. [31] esti-
mated more highly preferable images using gaze locations and
low-level features. Karessli et al. [18] classified objects using
only gaze features without object labels for zero-shot learning.
Additionally, Sattar et al. [28] predicted the category and at-
tribute of fashion clothing images by embedding gaze distri-
butions in the pooling layers of a CNN. Murrugrra-Llerena et
al. [26] classified the attributes of shoe and face images using
a binary masking of gaze distributions. However, the existing
methods do not consider the variation of gaze locations with
respect to body regions when participants tackle several dif-
ferent tasks using pedestrian images. We attempt to observe
the variation of gaze locations for different tasks of personal
attribute classification. Based on the gaze locations measured
with respect to body regions, we develop a method for extract-
ing features to improve the performance of personal attribute
classification.

3. Generating task-oriented gaze maps

3.1. Gaze locations in personal attribute classification

Here, we consider the regions of pedestrian images that are
frequently looked at by observers when manually classifying
personal attributes. For instance, Hsiao et al. [15] found that ob-
servers looked at a region around the nose when they identified
individuals from a facial image. In the case of gender classifi-
cation, we believe that the human face plays an important role.
However, a pedestrian image contains not only a face but also a
body. Yarbus [38] found that observers look at a different region
in a scene image when tackling each task of personal attribute
classification. However, he did not analyze the distributions of
gaze locations in pedestrian images for personal attribute clas-
sification. Thus, we attempt to discern the regions of pedestrian
images that tend to collect gaze locations from observers when
given several different manual personal attributes classification
tasks. Note that we assume that the alignment of the pedestrian
images has already been completed using a pedestrian detec-
tion technique such as [9, 16]. The details of our method are
also described below.
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Fig. 1. Parameters used to determine kernel size.

3.2. Generation algorithm
To generate a task-oriented gaze map, we use a gaze tracker

to acquire gaze locations while a test participant views a pedes-
trian image on a screen. We prepare T tasks, P participants, and
N pedestrian images. Given a gaze location (x f , y f ) in a certain
frame f , gaze map gt,p,n, f (x, y) is labeled 1 when x = x f , y = y f ;
otherwise, it is labeled 0, where p is a participant, t is a task,
and n is a pedestrian image. Note that the participant not only
looks at point (x f , y f ) on each pedestrian image, but also the re-
gion surrounding this point. Thus, we apply a Gaussian kernel
to the measured gaze map gt,p,n, f (x, y). To determine the size k
of the Gaussian kernel, we use the following equation:

k =
2dh

l
tan

θ

2
, (1)

where d is the distance between the screen and the participant,
θ is the angle of the region surrounding a measured gaze point,
l is the vertical length of the screen, and h is the vertical res-
olution of the screen. Figure 1 illustrates the parameters used
to determine the kernel size. We assume that each pixel on the
screen is square. We aggregate each gt,p,n, f (x, y) to gt,p,n(x, y) to
represent the distribution of gaze locations in a certain pedes-
trian image as

gt,p,n(x, y) =

Ft,p,n∑
f =1

k(u, v) ∗ gt,p,n, f (x, y), (2)

where Ft,p,n is the time taken to classify personal attribute by a
participant, ∗ is the convolution operator, and k(u, v) is a Gaus-
sian kernel of size k × k. We apply L1-norm normalization as
‖gt,p,n(x, y)‖ = 1 because Ft,p,n is different for each measure-
ment. Furthermore, we aggregate gt,p,n(x, y) into a single gaze
map for all participants and all pedestrian images. An aggre-
gated gaze map gt(x, y) representing the distribution of gaze lo-
cations is represented as

gt(x, y) =

P∑
p=1

N∑
n=1

gt,p,n(x, y). (3)

Note that we apply a scaling technique to the aggregated gaze
maps as g̃t(x, y) = gt(x, y)/max(gt(x, y)). Finally, g̃t(x, y) is a
task-oriented gaze map.

3.3. Experiments for task-oriented gaze map generation
To investigate the task-oriented gaze maps for personal at-

tribute classification, we captured gaze locations for P = 14
test participants (seven males and seven females, with an aver-
age age of 22.6 ± 1.3 years old) using a standing eye tracker
(GP3 Eye Tracker, sampling rate 60 Hz). All participants were
Asian with Japanese nationality. We used a 24-inch display

65 cm	
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100 cm	

70 cm	

Screen	

Eye tracker	

Chair	

44 cm	

Fig. 2. Setup for capturing gaze locations.

(size 53.1 × 29.9 cm, 1920 × 1080 pixels) as a screen. The ver-
tical distance between the screen and the participant was 65 cm
in the setting, as illustrated in Figure 2. The height from the
floor to the eyes of the participant was between 110 cm and 120
cm. The participants sat on a chair in a room with no direct sun-
light (illuminance 825 lx). We gave participants the following
four tasks:

t1: Gender classification—to determine whether the pedes-
trian is male or female;

t2: Logo classification—to determine whether the pedes-
trian is wearing a top with or without logos on it;

t3: Short-sleeve classification—to determine whether the
pedestrian is wearing short sleeved clothing or not;

t4: Backpack classification—to determine whether the
pedestrian is carrying a backpack or not.

The gender attribute is a representative physical characteristic,
as described in [7]. We attempted to observe which regions of
the whole body were viewed by the participants. The logo and
short-sleeve attributes are clothing attributes, and a backpack is
a carried-item attribute. These attributes are categorized as ad-
hered human characteristics, as described in [7]. We assumed
that participants looked around the torso in these attribute clas-
sification tasks. We attempted to observe the range of the gaze-
gathered region of each attribute.

We used 4,563 pedestrian images from the CUHK dataset
included in the PETA dataset [8] with attributes labels. We se-
lected N = 8 pedestrian images of Figure 3 from the dataset.
To select the eight pedestrian images, we first checked the
multi-attribute labels to determine if a pedestrian is wearing a
top with a logo (Logo: yes), is wearing short-sleeved cloth-
ing (Short-sleeve: yes), and is carrying a backpack (Backpack:
yes), simultaneously. The number of pedestrian images with
these multi-attribute labels was 49 (Male: 46, Female: 3) in
the CUHK dataset. We selected the four pedestrian images at
the top of Figure 3 while keeping the ratio of directions (front,
back, left, and right) equal. We also selected the remaining
pedestrian images of Figure 3 in the same manner. We used the
same pedestrian images for the four tasks for each participant
because our aim was to investigate whether the gaze locations
change depending on the tasks. We enlarged the pedestrian im-
ages from 80 × 160 pixels to 480 × 960 pixels to display the
stimulus images on the screen. We used this image size because
it is the maximum size that fits within the vertical resolution of
the display. To avoid a center bias [2, 5] in which the gaze loca-
tions are grouped in the center of the screen, we changed the po-
sitions of the pedestrian images by randomly adding offsets in
the range of ±720 pixels horizontally and ±60 pixels vertically.
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Gender	 Female	 Male	 Male	 Male	

Logo	 Yes	 Yes	 Yes	 Yes	

Short-sleeve	 Yes	 Yes	 Yes	 Yes	

Backpack	 Yes	 Yes	 Yes	 Yes	

Gender	 Male	 Female	 Female	 Female	

Logo	 No	 No	 No	 No	

Short-sleeve	 No	 No	 No	 No	

Backpack	 No	 No	 No	 No	

Fig. 3. Pedestrian images for generating task-oriented gaze maps.

Fig. 4. Examples of displayed stimulus images.

Figure 4 shows examples of the stimulus images displayed on
the screen.

We asked participants to complete the task of personal at-
tribute classification and measured gaze locations according to
the following procedure:

P1: We gave the participant a single attribute classification
task to complete.

P2: We displayed a flat gray image on the screen for 1 s.
P3: We displayed a stimulus image that included a pedestrian

image on the screen for 2 s. Prior to the trial, the partici-
pants had been instructed to keep looking at the image.

P4: We displayed a flat black image on the screen for 2 s
and the participant verbally reported whether or not the
attribute for that task appeared in the image.

P5: We repeated P2 to P4 until all the eight pedestrian images
(in random order) had been displayed.

Note that each participant tackled the procedure P1 to P5 for all
the four tasks of attribute classification. We also gave the tasks
in random order. In our preliminary experiment, we observed
that participants first assessed the position of the pedestrian im-
age on the screen and then, after establishing the position of the
image, attempted to determine the answer of the given task. To
determine Ft,p,n, we set the start time as the point at which the
gaze first stopped on the pedestrian image for more than 440
ms, and the end time as the point at which the pedestrian im-
age disappeared. In this scenario, the average Ft,p,n between

(a) Pedestrian image	
in a stimulus image	

1t 2t 3t 4t
(b) Measured gaze maps of participant 1	

1t 2t 3t 4t
(c) Measured gaze maps of participant 2	

Gender Male 

Logo Yes 

Short-sleeve Yes 

Backpack Yes 

Fig. 5. Examples of measured gaze maps of each participant for different
tasks. (a) Pedestrian image displayed in a stimulus image. (b) or (c) Gaze
maps measured from two participants viewing the pedestrian image.

(a)	 (b)	 (c)	 (d)	

Fig. 6. Task-oriented gaze maps for (a) gender, (b) logo, (c) short-sleeve,
and (d) backpack classification.

the start and end times was 1.56 ± 0.38 s. The accuracy of gen-
der classification by the participants was 100.0%, the accuracy
of logo classification was 91.1%, the accuracy of short-sleeve
classification was 97.3%, and the accuracy of backpack classi-
fication was 94.6%.

We set θ = 3◦ in Equation (1) by considering the range of
the fovea, which is about two degrees, as described in [10] and
the error of the eye tracker, which is about one degree. We
used a kernel size of k = 125 for the enlarged pedestrian im-
ages (480 × 960 pixels). Further, the size of the gaze maps was
downsized by 80 × 160 after adjustment from the original size
of the pedestrian images.

Figure 5 shows examples of the measured gaze maps
gt,p,n(x, y) of different tasks for a pedestrian image. We selected
gaze maps measured from two participants. The dark regions
in the gaze maps represent the gaze locations gathered from
the participants. The minimum intensities in Figure 5 represent
the maximum values of all gt,p,n(x, y). We observed that par-
ticipants frequently concentrated their gaze on a certain region
according to each task even though they viewed the same pedes-
trian image. For instance, both participants looked around the
head when tackling gender classification task t1 and they looked
around the chest when tackling logo classification task t2.

Figures 6 (a)–(d) shows the task-oriented gaze maps before
scaling for gender, logo, short-sleeve, and backpack classifi-
cation, respectively. To consider the properties of the task-
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oriented gaze map, we check how the gaze maps align with
the pedestrian images of Figure 3. We can see that the rough
positions of the body parts in the pedestrian images are well
aligned. Given these results, we consider the task-oriented gaze
maps to include the following regions:
• The region around the head gathered a large number of

gaze locations for task t1 (gender classification).
• The region around the chest gathered a large number of

gaze locations for task t2 (logo classification).
• The region around the upper body gathered a moderate

number of gaze locations for tasks t3 and t4 (short-sleeve
and backpack classification, respectively).

• The regions around the lower body and background gath-
ered few gaze locations for all tasks.

4. Extracting features using task-oriented gaze maps

4.1. Overview of our method
Here, we describe our method for extracting features using

task-oriented gaze maps. The regions that obtain high values
in the maps appear to contain informative features for partici-
pants because these regions are given attention when the partici-
pants manually classified the personal attribute in the pedestrian
images for each task. We assume that these regions contain
discriminative features for the classifiers of personal attributes.
Based on this assumption, we extract these features by assign-
ing large weights to the regions that obtain high values in the
task-oriented gaze map of each personal attribute. Importantly,
we assign weights for both the test and training samples using a
gaze map generated in advance. Thus, our method does not re-
quire gaze measurements for test samples. After extracting the
weighted features, we can apply machine learning techniques.
The details of our method are described below.

4.2. Feature extraction algorithm
Given a task-oriented gaze map g̃t(x, y), the weight wt(x, y)

for each pixel in a pedestrian image is given by wt(x, y) =

C(g̃t(x, y)), where C() is a correction function that emphasizes
or weakens values when a moderate level of gaze locations is
gathered for each task. We will show the efficacy of the correc-
tion function in Section 4.3.1.

A weighted pedestrian image iw(x, y) is calculated from
pedestrian image i(x, y) using iw(x, y) = wt(x, y)i(x, y). After
applying a weight function, we generate a feature vector for a
personal attribute classifier using raster scanning iw(x, y). Note
that we transform the RGB images to CIE L*a*b* color space,
weight the L* values, and do not change the a*b* values. We do
this because a numerical change in the L* channel corresponds
to the same amount of change in human perception.

4.3. Evaluation of the performance of personal attribute clas-
sification

4.3.1. Comparison of gaze map-based weight correction func-
tions.

We evaluated the accuracy of personal attribute classifica-
tions for various correction functions. We used the task-
oriented gaze maps in terms of t1 to t4, as shown in Fig-
ures 6 (a)–(d). We randomly selected images from the CUHK

(a) Task     :  gender classification	
F1	 F2	 F3	 F4	

F1	 F2	 F3	 F4	

F1	 F2	 F3	 F4	

(d) Task     :  backpack classification	
F1	 F2	 F3	 F4	

1t

4t

(c) Task    :  short-sleeve classification	3t

(b) Task    :  logo classification	2t

Fig. 7. Examples of test pedestrian images after applying correction func-
tions. We used the task-oriented gaze maps in F1 to F3. The results of our
gaze-based feature extraction are F1 and F2.

dataset, which is included in the PETA dataset [8]. There are
substantially fewer positive samples than negative samples for
each attribute in the CUHK dataset. To avoid the problems
associated with imbalanced data, we equalized the number of
samples for each attribute label in the test and training sets. We
also did not allow the same individual to appear in the pedes-
trian images in the training and test sets. Attribute labels were
used to identify pedestrian images that could be of the same
individual. We used 2,720 pedestrian images as training sam-
ples and test samples for learning a gender classifier, 560 pedes-
trian images for learning a logo classifier, 1,200 pedestrian im-
ages for learning a short sleeve classifier, and 2,480 pedestrian
images for learning a backpack classifier. We applied 10-fold
cross-validation for each classification task. We added the eight
images for generating a gaze map used in Section 3.3 as train-
ing samples. We set an equal ratio of positive and negative
labels. Both the training and test samples contained not only
frontal poses, but also side and back poses. The metric of the
performance of personal attribute classification was the accu-
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(a) Accuracy of gender classification	
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(b) Accuracy of logo classification	

(c) Accuracy of short sleeve classification	
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(d) Accuracy of backpack classification	
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F1	 F2	 F3	 F4	F1	 F2	 F3	 F4	

Fig. 8. Comparison of accuracy for different gaze map-based weight cor-
rection functions using nearest neighbor.

racy of classification for each attribute label. We generated fea-
ture vectors by raster scanning RGB values with down sampling
(40× 80× 3 dimensions) from weighted pedestrian images. We
used the k-nearest neighbor technique for all attribute classi-
fiers (k = 40) to confirm the baseline performance of personal
attribute classification. We compared the accuracies of the fol-
lowing correction functions:

F1: C(z) = z,
F2: C(z) = min{1, za + b},
F3: C(z) = 1 −min{1, za + b}, and
F4: C(z) = 1.

We determined the parameters of each personal attribute classi-
fication task via a grid search using validation sets. These val-
idation sets consisted of the remaining pedestrian images not
selected in test and training sets on the CUHK dataset. Param-
eters {a, b} were {0.75, 0.21} for task t1, {1.75, 0.02} for task t2,
{2.75, 0.04} for task t3, and {0.25, 0.10} for task t4.

Figure 7 shows examples of pedestrian images after applying
correction functions with the task-oriented gaze maps. Function
F1 directly uses values from the maps. If the correction function
parameter is 0 < a < 1, F2 emphasizes the values from the
maps, otherwise, it weakens the values from the maps. Function
F3 inversely emphasizes the values from the maps. Using F3,
we confirmed that the accuracy decreases when we assign small
weights to the regions to which the participants paid attention.
Function F4 was equal to the original pedestrian images.

Figure 8 shows the average accuracies for each gaze map-
based weight correction function for each task of personal at-
tribute classification. The error bars denote the standard devia-
tions of the accuracies. We found that the accuracy of F2 was
superior to that of F4 for each personal attribute. Thus, the use
of a gaze map appears to increase the performance of attribute
classifications. Given that F2 is superior to F1, it appears that
this correction function improves accuracy. The inverse weights
of F3 decreased the accuracy compared with those of F2. We
believe that the regions in which gaze locations were measured

(a) Accuracy of gender classification	

80	

50	
F1	 F2	 F3	 F4	

70	

40	

(b) Accuracy of logo classification	

(c) Accuracy of short sleeve classification	

80	

50	

70	

40	

(d) Accuracy of backpack classification	

F1	 F2	 F3	 F4	

F1	 F2	 F3	 F4	F1	 F2	 F3	 F4	

Fig. 9. Comparison of accuracy for different gaze map-based weight cor-
rection functions using support vector machine.

(a) Accuracy of gender classification	
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F1	 F2	 F3	 F4	
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(b) Accuracy of logo classification	

(c) Accuracy of short sleeve classification	
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70	
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(d) Accuracy of backpack classification	

F1	 F2	 F3	 F4	

F1	 F2	 F3	 F4	F1	 F2	 F3	 F4	

Fig. 10. Comparison of accuracy for different gaze map-based weight cor-
rection functions using logistic regression.

from participants for each task may contain discriminative fea-
tures for the classifiers of personal attributes.

Additionally, we investigated the classification performance
of our method by combining it with conventional classifiers.
Figure 9 shows the average accuracies using a linear support
vector machine classifier (the penalty parameter was C = 1)
and Figure 10 shows those using a logistic regression classi-
fier (the regularization parameter was 1). We again found that
F2 was superior to F1, F3, and F4. We believe that our gaze
map-based feature extraction can be used as preprocessing for
various conventional classifiers to improve the performance of
personal attribute classification.

4.3.2. Combining gaze maps with existing classifiers
We evaluated the performance of attribute classification by

combining our gaze-based feature extraction technique with
representative classifiers. We exploited deep learning and met-
ric learning techniques as representative classifiers because
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Table 1. Accuracy (%) of personal attribute classification by combining the
task-oriented gaze map with existing classifiers.

Classification Task-oriented Accuracy Accuracy
task gaze map CNN LMNN

Gender (t1) with 79.6 ± 2.2 78.5 ± 1.1
without 75.3 ± 3.1 76.0 ± 2.7

Logo (t2) with 60.0 ± 3.5 56.1 ± 5.3
without 57.9 ± 4.0 52.5 ± 4.9

Short sleeve (t3) with 74.0 ± 3.2 71.9 ± 3.1
without 66.9 ± 4.2 68.1 ± 4.2

Backpack (t4) with 56.9 ± 4.0 57.9 ± 2.6
without 53.5 ± 3.8 54.7 ± 2.4

other state-of-the-art methods of person attribute classification
used CNNs [30, 25, 29, 22] and metric learning [21, 41]. We
used the following classifiers: a CNN with a layer architec-
ture of Mini-CNN, as described in [1], and large margin near-
est neighbor (LMNN) classifier [34], which is a metric learn-
ing technique. To avoid overfitting due to the small number of
training samples, we used a small network with few convolu-
tional layers. We used the training and test samples described
in Section 4.3.1 for learning each classifier. We applied 10-
fold cross-validation for each classification task. Table 1 shows
the averages and standard deviations for each attribute classi-
fication with and without the task-oriented gaze maps. The
observed significant improvement demonstrates the efficacy of
our gaze-based feature extraction method for personal attribute
classification.

4.3.3. Comparison with a method using saliency maps
We compared the accuracy of our method with that of a

method that exploits saliency maps. We generated saliency
maps from each pedestrian image using existing methods pro-
posed by Zhang et al. [39] and Zhu et al. [42]. We then used
the saliency map instead of the task-oriented gaze map in the
classification task. We assigned test and training samples large
weights in regions with high saliency before applying CNN.
Figure 11 shows examples of the saliency maps. Note that
we scaled the saliency maps to normalizing the range of the
intensities to [0,1]. We evaluated the performance using the
same experimental conditions as in Section 4.3.2. The accu-
racy of the existing method using Zhang et al.’s saliency map
is 66.9 ± 2.5%, 56.4 ± 4.4%, 68.2 ± 2.3%, and 53.4 ± 2.8%
for tasks t1, t2, t3, and t4, respectively, and the accuracy of the
existing method using Zhu et al.’s saliency map is 66.8 ± 2.8%,
57.2±3.6%, 65.4±3.3%, and 53.9±2.4%, respectively. In con-
trast, the accuracy of our method is 79.6 ± 2.2%, 60.0 ± 3.5%,
74.0 ± 3.2%, and 56.9 ± 4.0%, respectively. Thus, for personal
attribute classification, our method outperforms some methods
using saliency maps.

4.3.4. Comparison with methods using regions of body parts
We evaluated the accuracy of a method using head–shoulder

or torso regions introduced in [35] instead of the task-oriented
gaze maps. For instance, Li et al. [20] reported improved gen-
der classification performance using the head–shoulder region.

Test pedestrian image	
(a)	

Zhang et al.’s saliency 
map	
(b)	

Zhu et al.’s saliency 
map	
(c)	

Fig. 11. Examples of saliency maps. (a) Test pedestrian images. (b) and (c)
Generated saliency maps.

Head−shoulder	
(a)	

Torso	
(b)	

Torso	
(c)	

Torso	
(d)	

1t 2t 3t 4t
Whole body	

(e)	

4t1t −	

Fig. 12. Examples of head–shoulder or torso regions for comparison with
our gaze-based feature extraction.

We used the head–shoulder region for task t1 and the torso re-
gion for tasks t2 to t4. Figures 12 (a)–(d) show examples of
head–shoulder and torso regions. In addition, we evaluated the
accuracy of a method using whole body regions generated from
the average intensities of the test and training pedestrian im-
ages. Figure 12 (e) shows an example of a whole body region.
We used the same experimental conditions as in Section 4.3.3.

The accuracy of the existing method using the head–shoulder
or torso regions is 76.0 ± 1.9%, 59.9 ± 3.9%, 64.7 ± 3.2%, and
52.8 ± 3.9% for tasks t1, t2, t3, and t4, respectively, and the
accuracy of the existing method using the whole body region is
77.1±2.0%, 56.2±4.1%, 70.2±3.2%, and 56.6±3.3%, respec-
tively. In contrast, the accuracy of our method is 79.6 ± 2.2%,
60.0 ± 3.5%, 74.0 ± 3.2%, and 56.9 ± 4.0%, respectively. The
methods using head–shoulder, torso, or whole body regions per-
formed worse than our method. We believe that not only does
the task-oriented gaze map ignore lower-body parts and back-
ground regions, but that it also contains meaningful cues for
classifying the personal attributes of individuals in pedestrian
images.

5. Conclusions

We hypothesized that gaze locations measured from ob-
servers performing a classification task contain informative fea-
tures and help to extract discriminative features for classifiers of
personal attributes. We demonstrated that the measured gaze lo-
cations tended to concentrate on specific regions of the human
body according to the manual personal attribute classification
task. We represented the informative region as a task-oriented
gaze map for each personal attribute classifier. Owing to the
efficacy of the task-oriented gaze maps for feature extraction,
our personal attribute classification method was more accurate
than representative existing classifiers. As part of our future
work, we intend to evaluate the classification performance of
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this approach with various pedestrian image datasets and gen-
erate gaze maps for various personal attributes such as the phys-
ical characteristics described in [23]. We also intend to develop
a method for inferring the ambiguity of attribute labels [24] us-
ing gaze maps. We would like to expand our research to investi-
gate whether or not there are differences among the nationality
and ethnicity of the participants when measuring gaze maps.
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