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Abstract

We propose a novel method of identifying people using
temporal and spatial changes in local movements measured
from a video sequence of body sway. Existing methods iden-
tify people using a gait feature mainly representing the large
swinging of the limbs. The use of the gait feature introduces
a problem in that the identification performance decreases
when people stop walking. To extract an informative feature
from people who have stopped walking, our method mea-
sures small swings of the body, which is called body sway.
We extract the feature from local movements of body sway
by participially dividing the body into regions. Experimen-
tal results for a dataset of body sway of 118 participants
show that the local movement feature obtained using our
method outperforms the gait feature obtained using an ex-
isting method.

1. Introduction

Identification using video surveillance cameras allows
the development of a convenient and non-intrusive biomet-
ric authentication system. Recently, soft biometrics [8]
that represent human attributes have been an active topic
of pattern recognition research in terms of extracting in-
formative features for identification. Human attributes can
be split intuitively into three types: physical characteris-
tics [1, 18] (e.g., gender and age), adhered human charac-
teristics [14, 13] (e.g., clothing and belongings), and behav-
ioral characteristics [10, 15] (e.g., gestures and gait). In par-
ticular, behavioral characteristics have the advantage that
there are differences in movements among individuals. Be-
havioral characteristics can thus be used to identify people
even if those people have the same attributes of gender and
age, or the same attributes of clothing.

Existing methods [10, 15] that use behavioral character-
istics generally exploit gait features acquired by cameras.
However, we cannot assume that people are always walk-
ing. People frequently stop walking when, for example, rid-

ing an elevator, waiting for a traffic light to change, or wait-
ing in line to use a cash machine. In these situation, gait
features insufficiently represent behavioral characteristics,
and they are not informative for identification. The iden-
tification performance is therefore sometimes lower when
using gait features.

When people stop walking, their bodies do not remain
completely still but slightly and continuously move in all
directions. This movement of the body naturally occurs to
maintain a person’s posture, and is called body sway. In the
field of medical science, many researchers [12, 4, 16, 20, 2]
have attempted to measure the center of gravity of body
sway using force plates embedded in a floor. The pur-
poses of existing methods are not identification, and instead
it has been reported that the center of gravity can be used
to classify gender and age [12, 4], people with lower-back
pain [16], women with morning sickness [20], and patients
with neuropathy [2]. We thus assume that body sway con-
tains the identity of people, and is a behavioral characteris-
tic that can be used as a human attribute in soft biometrics.
In this paper, we tackle the challenging task of extracting an
informative feature for identification from a video sequence
of body sway. In addition, body sway has the advantage that
we can passively observe people with an overhead camera
because the movement of body sway can be measured for
the upper half of the body. We thus do not need to set a
camera to the side of a person, as widely done in extracting
gait features [10, 15]. The use of an overhead camera can
avoid the occlusion of people when the number of people
increases.

To this end, we propose a method of identifying peo-
ple using video sequences of body sway acquired from peo-
ple having stopped walking by measuring local movements
in body regions. Our method computes the center of body
sway from a video sequence, and spatially divides the body
region into small local regions using the center of body
sway. Our method measures temporal and spatial changes
in local movements in the regions, and conducts frequency
analysis for feature extraction. Note that we treat an upright
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posture as a specific example of the posture of a person hav-
ing stopped walking. We originally collected a novel dataset
of body sway for 118 subjects. Experimental results show
that the identification performance improved from 52.0%
when using a gait feature of an existing method to 94.6%
when using our local movement feature.

The remainder of the paper is organized as follows. Sec-
tion 2 describes our method of extracting the feature from a
video sequence of body sway, Section 3 presents the identi-
fication performance when using body sway, and Section 4
gives our concluding remarks.

2. Our method
2.1. Overview

We consider the informative feature extracted from a
video sequence of body sway acquired for people having an
upright posture. The first feature is movement representing
how much the body is temporally and spatially swinging.
The movement contains an identity that is the difference in,
for example, gender, age, chronic disease, how muscles at-
tach, or sense of balance. The second feature represents the
body shape, such as an obese or thin body type. The third
feature represents the body posture, such as a stooping or
slouching posture.

With respect to gait recognition, existing methods [10,
15] mainly exploit the body shape and slightly add move-
ments of the limbs. Existing methods [10, 3] of action
recognition have a basis similar to that of gait recognition.
Researchers [11, 7] have exploited temporal movement for
gaze authentication. Although existing methods are de-
signed for the different propose of identifying people using
body sway, we can simply use the methods for feature ex-
traction. In preliminary experiments, however, we could not
obtain high identification performance using existing meth-
ods for video sequences of body sway.

We focus on how to represent the identity using tempo-
ral and spatial changes in movements due to body sway.
Figure 1 is an overview of our method. We divide the body
region into small local regions to represent the spatial move-
ments of body sway. We measure temporal changes in local
movements from the local regions, and compute a feature
for identification. The detail of our method is described be-
low.

2.2. Measuring temporal and spatial changes in lo­
cal movements

We describe a method of measuring temporal and spatial
changes in local movements from a video sequence of body
sway. The movements of body sway occur around a cer-
tain position that is the center of the swinging movement.
An existing method [17] measures the movements using a
whole body region under the assumption that all body parts
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Figure 1. Overview of our method.

synchronically move in the same direction. Although the
existing method considers temporal changes in the move-
ment, it ignores spatial changes in the movement. We thus
extend the existing method to represent spatial changes in
movement and extract informative features measured from
body sway.

We compute a mask image mt in which a pixel takes a
value 1 if it is within a body region and zero otherwise from
a frame of the video sequence at time t ∈ 1, ..., T . The ex-
isting method [17] infers the reference time r representing
the temporal center of swings using algorithm 1 from whole
body regions in mask images.

Algorithm 1 Determining reference time r

for r̃ = 1 to T do
Dr̃ ← 0
for t = 1 to T do

compute d̃ = ∥mr̃ −mt∥1
Dr̃ ← Dr̃ + d̃

end for
end for
r ← arg minDr̃

To consider the spatial change in movement, our method
divides the body region into a plurality of local regions, and
computes the local movement in each region. The simple
idea is to divide the body region into a lattice. However,
we cannot stably measure movements around the center of
gravity of the body region when the lattice cells are made
small. We thus radially divide the body region into local re-
gions using the center of gravity of the body, as illustrated
in Figure 2. Our method computes the center of gravity of
the body region using the mask image mr acquired at refer-
ence time r. Note that we assume that the center of gravity
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Figure 2. Examples of local regions radially divided from the body
region. I is the number of local regions.

is at the same position for all times t ∈ 1, ..., T . Our method
measures the temporal changes in local movements from the
local regions divided spatially using Algorithm 2. We aim
to represent the spatial changes in movement in more detail
by increasing the number of divisions. The local movement
di,t in a local region i ∈ 1, ..., I is computed as

di,t =
∑

x∈region(i)

∥mr(x)−mt(x)∥1 (1)

where mr(x) and mt(x) are pixel values indicated by x,
and region(i) is the i-th local region. We regularized with
the L1-norm.

Algorithm 2 Computing local movement di,t
compute the center of gravity in mr

for i = 1 to I do
set the i-th region using the computed center
for t = 1 to T do

compute di,t using Equation (1)
end for

end for

2.3. Extracting the feature for identification

We describe a method of extracting the feature for iden-
tification from the temporal and spatial changes in lo-
cal movements. The identification performance decreases
when directly using the changes in local movements be-
cause the swings of body sway vary in random directions.
We thus need to consider a feature invariant to the random-
ness of the swings.

In the field of signal processing, frequency analysis tech-
niques are widely used to extract informative features from
time series signals. Because the changes in local move-
ments are also time series signals, we believe that the fre-
quency analysis techniques are adequate for achieving high
performance. We assume that the phase components are
shifted each time when measuring local movements. To al-
leviate the randomness of swings, we do not use the phase
components.

Our method estimates the power spectral density (PSD)
employing Welch’s method [19] from the local movements
di,t to extract the feature f for identification using Algo-
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Figure 3. Setup for acquiring video sequences of body sway.

rithm 3. We assume that high-frequency components con-
tain unnecessary noise for identification. Our method ex-
ploits only low-frequency components f i by selecting them
from the DC component to the M -th component. The di-
mension of f i is M . The feature for identification is repre-
sented as f = [fT

1 , . . . ,f
T
I ]

T. The dimension of f is IM .
We expect that f represents the identify of people while al-
leviating the randomness of the swings in the temporal and
spatial changes of local movements.

Algorithm 3 Extracting the feature f

for i = 1 to I do
compute the PSD from {di,t|t ∈ 1, ..., T}
take the logarithm of the PSD for each frequency
select the PSD f i of M low frequencies

end for
concatenate {f i|i ∈ 1, ..., I} to f

3. Experiments
3.1. Dataset of video sequences of body sway

To evaluate the identification performance of our
method, we collected video sequences of body sway ac-
quired for 118 participants (average age of 22.1±4.3 years;
83 males and 35 females). Each participant maintained an
upright posture while standing with their heels aligned as
shown in Figure 3 (a). We asked all participants to wear the
same dark-blue nylon outerwear, such as a uniform worn by
factory workers. We set an overhead camera at a height of
2.3 m. We applied a camera calibration technique such that
the optical axis coincided with the floor normal. Each par-
ticipant stood under the camera as shown in Figure 3 (b).
A marker was set to position a heel of the participant at
the standing position. We asked each participant to look
at a timer set at a position 3 m away. We displayed the
time lapse on the timer. We used video sequences com-
prising images of 1920 × 1080 pixels captured at 30 fps
by a Microsoft Kinect V2. The time length of a video se-
quence was 120 s, and the number of sampled movements
was T = 120 × 30 = 3600 for each local region. We used
a fixed 1000 × 1000 bounding box to measure local move-
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Figure 4. Examples of temporal and spatial changes in local movements measured from video sequences of two subjects.

ments. Each participant was observed three times. The par-
ticipant sat and rested each time shooting ended. To gener-
ate mask images of body regions, we applied a background
subtraction technique using images without participants.

3.2. Evaluation of the parameters of our method

Figure 4 shows examples of our local movement fea-
tures for two participants. The acquired video sequences
are shown in (a) and (e), and the four local regions are pre-
sented in (b) and (f). Features in (c) and (g) were extracted
from the temporal and spatial changes of the local move-
ments in (d) and (h). We find that features differ between
the participants even though the video sequences appear to
be almost the same.

We evaluated the identification performance while
changing the number of local regions I and the range of the
low frequencies M , separately. We used one query video
sequence and two target video sequences for each partici-
pant. We used the correct match rate (%) for the identifi-
cation performance. Figure 5 (a) and (b) shows the iden-
tification performance. We used a nearest-neighbor algo-
rithm for identification. To compute the PSD, we used a
Hann window and 512 signal samples for the fast Fourier
transformation. We set M = 128 in (a) and I = 30 in
(b). In (a), I = 1 corresponds to no division into local
regions. We see that the identification performance was im-
proved by increasing the number of local regions. When
the number of local regions exceeded 20 in (a), the identi-
fication performance was almost constant. We also see that
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Figure 5. Identification performance when changing the parame-
ters of our method: (a) number of local regions, (b) range of low
frequencies.

high-frequency components reduce the identification per-
formance in (b). M = 128 provided the best performance.
We believe that high-frequency components do not repre-
sent features sufficient for identification.

We combined our local movement feature extraction
with the nearest-neighbor (NN) algorithm and the follow-
ing classifiers.



Table 1. Identification performance (%) when combining our fea-
ture with existing classifiers.

NN SVM LDA LR
87.3± 1.8 87.6± 1.4 92.4± 4.2 94.6± 1.4
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Figure 6. Identification performance when changing the time
length of video sequences.

• SVM: support vector machine [5] (penalty parameter
C = 1, use of RBF kernels),
• LDA: linear discriminant analysis [9] (dimension re-

duced to 117 using principal component analysis),
• LR: logistic regression [6] (regularization parameter

of 1).

Table 1 presents the identification performance when com-
bining our feature with existing classifiers. We used the
same query and target sequences as in the above experi-
ment. We see that LR had higher identification performance
than the other classifiers.

Figure 6 shows the identification performance when re-
ducing the time length of video sequences from 120 s (T =
3600). When the time length was reduced to 1/2 or 1/4, the
performance reduced by 6.5 or 31.6 points, respectively. We
believe that the degradation of the performance is related to
the periodicity of body sway. We should conduct further
examinations to reduce the time length in future work.

3.3. Comparison with features extracted using ex­
isting methods

We compared the identification performance between the
local movement feature obtained using our method and fea-
tures obtained using existing methods.

• LM (Local Movements): We computed a feature using
our method. We set the parameters I = 30,M = 128.
• GEI (Gait Energy Image) [10]: We assumed a walking

cycle T . We computed a feature by averaging the mask
images as ΣT

t=1mt/T .
• MHI (Motion History Image) [3]: We assigned a

weight τ = t/T for each time at a position where
movement was generated. We temporally added the
weights at each position.
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Figure 7. Comparison of the identification performance achieved
with local movement feature obtained using our method and the
performances of features obtained using existing methods.

• MEI (Motion Energy Image) [3]: We set positions
where movement was generated as ∪Tt=2|mt−mt−1|.
• C (Cepstrum) [11]: We applied cepstrum analysis to

the temporal change in local movement. We used que-
frencies from the DC component to the 1100-th com-
ponent for a feature.
• MFCC (Mel-frequency Cepstrum Coefficients) [7]:

We computed a feature using 40 coefficients.

We used 120-s video sequences of 118 participants and a lo-
gistic regression classifier. The query and target sequences
had the same experimental conditions described in Sec-
tion 3.2. Note that C and MFCC were computed from 30
local regions as in our method.

Figure 7 shows the identification performance achieved
using features extracted using our method and existing
methods. We see that LM outperformed GEI, MHI, and
MEI. We believe that the performances of GEI, MHI, and
MEI were lower because these methods cannot represent
small movements of the body; the purpose of GEI was gait
recognition when people move their limbs largely while the
purpose of MHI and MEI was action recognition when peo-
ple dynamically move their bodies. The performances of
MHI and MEI were almost equivalent, while the perfor-
mance of GEI was lower. Table 2 compares LM and GEI
in terms of the numbers of correctly and wrongly identified
queries. LM had more correctly identified queries than did
GEI. Returning to Figure 7, we see that LM outperformed
C and MFCC. We believe that the performances of C and
MFCC were lower because the purpose of these methods
was gaze authentication when people abruptly move their
eyes within a short time and these methods are thus un-
able to stably represent body sway that is characterized by
low-frequency components over a long time. We confirmed
that our method outperforms existing methods in identify-
ing people using body sway.

3.4. Evaluation of the variation in identification per­
formance over the long term

We checked the variation in the identification perfor-
mance over the long term. We collected data for 10 par-



Table 2. Comparison of the numbers of correctly and wrongly
identified queries. The total number of queries was 118×3 = 354.

GEI (Correct) GEI (Wrong)
LM (Correct) 176 159
LM (Wrong) 8 11

ticipants (average age of 22.6 ± 1.3 years; nine males and
one female). We acquired three target video sequences for
each participant. After 128 days, we acquired three query
video sequences for each participant. We used the same
experimental conditions described in Section 3.3. The iden-
tification performance of LM was 55.0 ± 8.3%, while the
performances of GEI, HMI, and HEI were 31.7 ± 1.7%,
38.3 ± 8.3%, and 43.3 ± 3.3%, respectively. Although the
identification performance of our method was higher than
the performances of existing methods, variation remained
over the long term. We need to improve the performance in
future work.

4. Conclusions
We proposed a method of identifying people using video

sequences of body sway. We designed a feature for iden-
tification by measuring temporal and spatial changes in lo-
cal movements. We evaluated our method on a dataset of
body sway collected for 118 participants. Our method of
identification was highly accurate compared with existing
representative methods. To the best knowledge of the au-
thors, this is the first work in the area of person recognition
that focuses on the use of body sway to extract informative
features. As part of our future work, we intend to evaluate
the identification performance for various postures of peo-
ple standing.
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L. Deecke. Spontaneous body sway as a function of sex,
age, and vision: posturographic study in 30 healthy adults.
European Neurology, 32(5):253–259, 1992. 1

[13] C. H. Kuo, S. Khamis, and V. Shet. Person re-identification
using semantic color names and rankboost. In Proceedings of
IEEE Workshop on Applications of Computer Vision, pages
281–287, 2013. 1

[14] A. Li, L. Liu, K. Wang, S. Liu, and S. Yan. Clothing at-
tributes assisted person reidentification. IEEE Transactions
on Circuits and Systems for Video Technology, pages 134–
146, 2015. 1

[15] Y. Makihara, R. Sagawa, Y. Mukaigawa, T. Echigo, and
Y. Yagi. Gait recognition using a view transformation model
in the frequency domain. In Proceedings of 9th European
Conference on Computer Vision, pages 151–163, 2006. 1, 2

[16] N. Nies and P. Sinnott. Variations in balance and body sway
in middle-aged adults. subjects with healthy backs compared
with subjects with low-back dysfunction. Spine, 16(3):325–
330, 1991. 1

[17] M. Nishiyama, T. Miyauchi, H. Yoshimura, and Y. Iwai. Syn-
thesizing realistic image-based avatars by body sway analy-
sis. In Proceedings of the Fourth International Conference
on Human Agent Interaction, pages 155–162, 2016. 2

[18] H. Tang, H. Liu, and W. Xiao. Gender classification using
pyramid segmentation for unconstrained back-facing video
sequences. In Proceedings of the 23rd ACM International
Conference on Multimedia, pages 1183–1186, 2015. 1

[19] P. Welch. The use of fast fourier transform for the estimation
of power spectra: A method based on time averaging over
short, modified periodograms. IEEE Transactions on Audio
and Electroacoustics, 15(2):70–73, 1967. 3

[20] Y. Yu, H. C. Chung, L. Hemingway, and T. A. Stoffregen.
Standing body sway in women with and without morning
sickness in pregnancy. Gait & posture, 37(1):103–107, 2013.
1


