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Abstract

This paper proposes a novel method for deblurring fa-
cial images to recognize faces degraded by blur. The main
problem is how to infer a Point Spread Function (PSF) rep-
resenting the process of blur. Inferring a PSF from a single
facial image is an ill-posed problem. To make this prob-
lem more tractable, our method uses learned prior informa-
tion derived from a training set of blurred facial images of
several individuals. We construct a feature space such that
blurred faces degraded by the same PSF are similar to one
another and form a cluster. During training, we compute a
statistical model of each PSF cluster in this feature space.
For PSF inference we compare a query image of unknown
blur with each model and select the closest one. Using the
PSF corresponding to that model, the query image is de-
blurred, ready for recognition. Experiments on a standard
face database artificially degraded by focus or motion blur
show that our method substantially improves the recogni-
tion performance compared with state-of-the-art methods.
We also demonstrate improved performance on real blurred
images.

1. Introduction
Identification using face recognition technology allows a

convenient, and non-intrusive biometric authentication sys-
tem [15]. Identification performance is significantly influ-
enced both by the variation in appearance due to facial pose
and illumination, and by image degradation due to sam-
pling, blur, and noise. Many existing methods handle fa-
cial pose and illumination, but only recently has research
started to focus on handling image degradation [1, 10, 11].
It is important to solve this problem for real-life face recog-
nition applications such as watch-list monitoring and video
surveillance. However, these papers mainly address sam-
pling of face images. The focus of this paper is thus blur,
and in particular, automatic deblurring for face recognition.

Blur changes the appearance of faces in images, causing
two problems for face recognition: (i) the facial appearance
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Figure 1. Variation in facial appearance caused by blur. We con-
struct a new frequency magnitude-based feature space that clusters
similar levels of blur together, regardless of identity. These clus-
ters are used to find an appropriate PSF to deblur query images for
accurate face recognition.

of an individual changes drastically, e.g. Figure 1 (a) and
(b); and (ii) different individuals tend to appear more simi-
lar when blurred, e.g. Figure 1 (b) and (d). The first problem
can be alleviated by matching a query image to artificially
blurred copies of the original sharp target images registered
for identification [23]. However, the second problem re-
mains since the blurred copies become similar to each other.
Moreover, in a real application the target images may them-
selves already be blurred. Instead, we choose an approach
that removes blur from facial appearances using blind image
deconvolution [14]. The deblurred images can then be used
to perform more robust identification The approach solves
both problems (i) and (ii) simultaneously. The deconvolu-
tion requires a Point Spread Function (PSF) that represents
the blurring process.

The majority of previous methods (see Section 2) use
the smoothness of intensity changes around edges to infer
the PSF from a single image, without prior knowledge of
the image contents. These methods thus often infer a poor
quality PSF as the problem is ill-posed: it is difficult to
distinguish between blurred edges and smooth object sur-



faces. Our method instead exploits prior knowledge con-
taining how facial appearances are changed by blur.

To this end, we propose a new method called Facial de-
blur Inference for inferring PSFs using learned statistical
models of the variation in facial appearance caused by blur.
At training time, we choose a representative set of PSFs
for a particular application. For each PSF in this set, we
artificially blur the sharp training images and use to build a
statistical model of facial appearance under that PSF. At test
time, we infer a PSF by comparing the query image (with
unknown identity and amount of blur) to each model.

Our method maps blurred images to a feature space for
learning statistical models. Simply vectorizing the images
does not generalize well for the feature space since the vec-
torized images are not clearly separated, and indeed our
experiments show poor performance (‘Baseline A’ in Sec-
tion 5). We instead design a new frequency magnitude-
based feature space, illustrated in Figure 1, in which the
variation of facial appearance caused by blur is larger than
the variation of facial appearance between individuals. In
this new feature space, faces blurred by the same PSF are
similar to one another and form a cluster. Our method learns
the statistical models by approximating each cluster as a
low-dimensional linear subspace using principal component
analysis (PCA). At test time, we compare query images to
each subspace. The most similar subspace gives an accu-
rate inferred PSF which is used to deblur the query image
for input to a standard face recognition algorithm.

The salient contributions of this paper are the following:

• Learning statistical models of the variation in facial ap-
pearance caused by blur to accurately infer PSFs from
blurred images.

• A new frequency magnitude-based feature space in
which these statistical models are learned. This fea-
ture space is designed to emphasize the different ap-
pearances of different levels of blur but be invariant to
facial identity.

• A demonstration that these statistical models gener-
alize well, maintaining PSF inference accuracy: the
models are trained on faces that are completely differ-
ent to target images for identification.

Our experiments on real and artificially blurred face images
show high PSF inference and face recognition accuracy that
improves on prior work.

The rest of this paper is organized as follows: Section 2
describes related work, Section 3 describes our method for
PSF inference, and Section 4 demonstrates the effectiveness
of our method through experiments. We conclude our dis-
cussion in Section 5.
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Figure 2. Our method is composed of two steps: (a) learning statis-
tical models of facial blur appearance, and (b) using these models
to recognize individuals in query images of unknown blur.

2. Related work
In the field of blind image deconvolution, many meth-

ods have been proposed for deblurring from a single image.
Chan & Wong [3] simultaneously infer a PSF and deblur
an image using Total Variation regularization. Other meth-
ods attempt to model the smoothness of intensity changes
around edges. A PSF is inferred using information derived
from this smoothness using the variation of Gaussian scale
[12, 5], wavelet coefficient [20, 24], the summation of im-
age derivatives [27], or alpha values representing the object
boundary transparency [13]. These methods have to solve
an ill-posed problem because they cannot use prior knowl-
edge of the image contents, and so the quality of a deblurred
image using an inferred PSF is often poor. As we will see
in our experiments, the deblurred images using these meth-
ods are insufficient for accurate face recognition. Yuan et
al. [28] infer a PSF using multiple images captured from
the same scene with long and short exposure times. This
setting limits face recognition applications. Fergus et al.
[7] infer a PSF using heavy-tailed natural image priors, but
this prior is very generic and so fairly weak, and the method
requires much computation time for PSF inference.

3. Facial Deblur Inference
3.1. Background

The degradation process caused by blur is defined as

g = Hf + n , (1)

where vector g represents the blurred image g(u, v), matrix
H the PSF, vector f the original sharp image, and vector
n the noise. Equation (1) represents an explicit appearance
model for blur. Note that g and f consist of only the facial
region given by a face detector.

If the PSFH and noise n are known, a sharp image f can
be exactly recovered from the blurred image g. This paper
focuses on accurately inferring a PSF H from a blurred fa-
cial image g, though we also compare in our experiments
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Figure 3. Comparison of feature vectors. The blue curves are feature vectors generated from the top-left sharp image and the red curves
are ones from the bottom-left blurred image. The feature vectors in our feature space (d) are much more clearly separated than in (a) using
Baseline A. (a) One scan-line through a simple vectorization of the image (Baseline A). (b) One row of the the 2D Fourier transform of the
images. (c) The same row after taking logarithms. (d) The same row with normalization. These transformations create our feature space.
The horizontal axis of (a) represents position in space domain. The horizontal axes of (b),(c),(d) represent frequency in the Fourier domain,
with low frequency in the center and higher frequencies further away from the center.

how, given our inferred PSF, two conventional deblurring
methods cope with the noise.

3.2. Overview

We start with an overview of our method, illustrated in
Figure 2. This paper assumes that a representative fixed set
Ω = {Hi}Ni=1 of N PSFs are constituted as described in
[21]. These PSFs are chosen for a particular application.
We represent statistical models for PSF inference as sub-
spaces in the frequency magnitude-based feature space (see
Section 3.3). We denote a set of statistical models as

Φ = { (Hi , φi) }Ni=1 , (2)

where φi represents the subspace modeling the variation in
facial appearance induced by PSF Hi. We learn subspaces
φi from a set of M training images Ψ = {f ′k}Mk=1. A train-
ing image f ′k is a sharp image that is artificially blurred by
each Hi to learn the subspace φi (see Section 3.4). Note
that the individuals in Ψ can be completely different to tar-
get images for identification.

A query image g of unknown blur and identity is com-
pared to each subspace using the subspace method [25]
which can be easily implemented and gives an accurate and
stable similarity measure (see Section 3.5). The closest sub-
space φs is selected and the corresponding PSF Hs is the
result of our PSF inference. The query image g is deblurred
using Hs (see Section 3.6), and finally identification of the
deblurred image is performed.

3.3. Frequency Magnitude-based Feature Space

We construct a feature space that is sensitive to the
appearance variations of different blurs but insensitive to
the difference between individuals. We base the feature
space on frequency domain amplitude, because it has a phe-
nomenon that high frequency amplitudes for blurred images
become smaller than those for sharp images [9]. Since we

want a feature space invariant to identity, we deliberately
ignore phase information.1

Inferring a PSF using frequency domain amplitude is
well-known technique [21, 8, 2, 4]. The method [21] selects
a PSF from a representative fixed set Ω using amplitude of
a sharp image and noise. But, it is difficult to correctly es-
timate these amplitudes from the blurred image because the
sharp image is unknown. Other methods [8, 2, 4] use the re-
lationship between PSF parameters and the positions of the
zero crossings of amplitude. However, detecting these po-
sitions is difficult for real blurred images because the zero
crossings are affected by the noise amplitude. Our method
instead uses the whole frequency amplitude domain for con-
structing the feature space. The variation caused by noise is
included in the subspaces φi learned in our feature space by
adding noise to training images (see Section 3.4).

We emphasize discriminative high frequency amplitude
to improve the PSF inference accuracy. Our method first
transforms a blurred image g(u, v) in space domain to a fea-
ture image x(ξ′, η′) as

x(ξ′, η′) = [ C(|g(ξ, η)|) ] ↓ , (3)

where g(ξ, η) is the 2D Fourier transform of g(u, v), | |
takes the amplitude, C takes dynamic range compression,
and [ ] ↓ represents downsampling. Dynamic range com-
pression is performed to emphasize high frequency values
because non-discriminative low frequency values are much
larger than discriminative high frequency values. For the
function C, we simply take logarithms that shifts from a
large value to a small value while maintaining order rela-
tion. Downsampling helps reduce noise and speed-up sub-
space learning. Bilinear interpolation is used for downsam-
pling. We choose the procedures C and [ ] ↓ from the view-
points of computation time and inference accuracy. The
feature vector x is generated by raster-scanning x(ξ′, η′).

1Without blur, of course, phase information is a good feature for face
recognition [22].
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Figure 4. Visualization of clusters in two feature spaces. Artificially blurred facial images (left) are vectorized either directly (center,
Baseline A) or using the frequency domain amplitude (right, our method). Colors represent the particular PSFs used to blur the faces. Our
evaluation highlights the importance of the much cleaner separation of the PSF clusters using our method.

Finally, as pre-processing for the subspace method, vector
x is normalized so that ‖x‖2 = 1.

Figure 3 compares feature vectors generated from a
sharp image and its blurred version. The vectors in Fig-
ure 3 (a) to (d) are the outputs of each step in Equation (3)
and the normalization. Note that the waveforms of the vec-
tors in Figure 3 (a) are almost the same, but the difference
between sharp and blurred images appears most cleanly in
our feature space in Figure 3 (d).

Further, Figure 4 uses PCA to visualize two feature
spaces containing images blurred by three different PSFs.
The Baseline A feature space (center) directly vectorizes
the blurred facial images. Observe that our frequency
magnitude-based feature space (right) gives clusters that are
much better separated. Our experiments below compare
these two feature spaces and confirm that our feature space
gives more accurate PSF inference and face recognition.

3.4. Learning Subspaces

We generate subspaces for the statistical models to rep-
resent clusters in the feature space. Training images are
blurred by applying each PSF Hi to sharp training images
f ′k in a training set Ψ as g′ik = Hif

′
k + n′, where n′ is the

noise which we assume to be white Gaussian.

Next, we apply PCA to blurred training images {g′ik}Mk=1

in our feature space, as follows. Having transformed image
g′ik to feature vector x′ik, the correlation matrix [17] is de-
fined asAi = 1

M

∑M
k=1 x

′
ik(x′ik)T. Note that the mean vec-

tor of {x′ik}Mk=1 is not subtracted for the correlation matrix
because our implementation of subspace method uses an an-
gle for similarity measure (see Equation (4)). Eigenvectors
and eigenvalues of the correlation matrix Ai are calculated.
The first D eigenvectors, sorted by decreasing eigenvalue,
form the basis vectors of the subspace φi = {bij}Dj=1. The
low-dimensional subspace spanned by the basis vectors φi
is defined by maximizing the variance of training feature
vectors {x′ik}Mk=1 in this subspace.

(a) No blur (b) σ = 2 (c) σ = 4 (d) σ = 6 (e) σ = 8

Figure 5. Examples of synthesized images of camera focus blur
from the subset ‘fb’ of FERET. Blurred images (b), (c), (d), and (e)
are synthesized from the sharp original image (a) using Gaussian
PSFs with given standard deviations σ.

3.5. Determining the PSF

Given a blurred query image g of unknown blur, we find
the closest subspace φs in a set of statistical models Φ as

s = arg max
i

cos2 θi

= arg max
i

D∑
j=1

(bij
Tx)2, (4)

where x is the feature vector of g, θi is the angle between
vector x and subspace φi, and i ∈ {1, . . . , N}. A small
angle θi indicates that the blurred query image g is similar
to a cluster of the training images blurred by PSF Hi that
generated the subspace. The maximization of cos2 θi over i
thus implicitly infers the most appropriate PSF Hs.

3.6. Restoration

Given PSF Hs, we can then remove blur from the de-
graded query image g. Simple matrix inverse based decon-
volutions give a very poor quality result because of existing
noise n in Equation (1). We thus use Wiener filters [26]
or the BTV regularization from [6]. These differ in their
treatment of noise and computational expense. The detail
of BTV is described in Appendix A.

4. Experiments

To demonstrate the effectiveness of our method, we
evaluated on the FERET [19] and FRGC 1.0 [18] face
databases. We investigate camera focus blur and camera
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Figure 6. Performance on FERET of artificially camera focus blur. Query set are blurred with Gaussian PSF. The curves in (a) show PSF
inference accuracy and the curves in (b) show identification performance .

motion blur. Camera focus blur arises when the camera fo-
cal length is not correctly adjusted to the subject. Camera
motion blur arises when the camera is moved while captur-
ing an image.

4.1. Evaluation on an artificially blurred database

4.1.1 Camera focus blur

The first experiment tests on synthesized images by blur-
ring sharp query faces from FERET. Sharp faces are
blurred by shift-invariant Gaussian PSFs as H(u, v) =
1
Z exp

(
−(u2+v2)

2σ2

)
, where σ is the standard deviation, and

Z is a normalization term as
∫ ∫

H(u, v)dudv = 1. This
PSF is defined in the space domain. White Gaussian noise
of 30dB is added to the synthesized images. Examples are
shown in Figure 5. The facial images are registered using
facial feature points (eyes, nose, etc.). Image g(u, v) is of
size 128×128, and downsampled x(ξ′, η′) is of size 64×64.
For the representative fixed set Ω of PSFs, we use N = 18
PSFs, including 17 Gaussians and 1 ‘no blur’ delta function.
The parameters of the Gaussian PSFs are set from σ = 1 to
9 in increments of 0.5. The database includes three subsets:
‘bk’, ‘fa’, and ‘fb’. Each subset contains a single image per
person. Subset bk is used as training set Ψ to learn the sub-
spaces in a set of statistical models Φ. The dimension of
each subspace is D = 20. The number of training images
is M = 200.

We evaluate performance on the 1001 images that remain
in subsets fa and fb after removing the individuals present
in subset bk. The identification target set is fa and the query
set is fb. The deblurred face images are identified using Eu-
clidean nearest-neighbor matching of the raster-scan vector-
ized images. This matching can assess standard identifica-

tion performance under the situation where only one query
image is used per person. We evaluate performance using
another matching method in Section 4.2.

Before reporting identification accuracy, we show PSF
inference accuracy on the query images in Figure 6 (a). Av-
erage error is defined as ‖σc−σs‖1 where σc is the standard
deviation of the PSF used for synthesizing the blurred image
(ground-truth), and σs is that of the inferred PSF. We com-
pare our method (iii) to two alternatives: (i) Baseline A uses
a directly vectorized feature space (cf. Figure 4); and (ii)
Hu & Haan [12] estimate the standard deviation of Gaus-
sian PSF from the smoothness of intensity changes around
edges. This method can handle only camera focus blur. As
we see, our result (iii) is superior to the baseline and [12].
An interesting anomaly is that the PSF inference accuracy
of Baseline A increases with blur. This is probably because
increasing the blur reduces variation in the Baseline A fea-
ture space which can thus be more adequately represented
by a low-dimensional subspace.

In Figure 6 (b), we report identification accuracy as
recognition rate: the probability that a query image is
matched to the correct target image of the same individual.
We compare our method (iv) and (v) to three alternatives:
(i) Baseline A uses a directly vectorized feature space; (ii)
Baseline B does no PSF inference or deblurring, and in-
stead directly matches blurred query images against sharp
target images; and (iii) the PSF inference of Hu & Haan
[12] is used. Identification accuracy is evaluated by com-
bining restoration (cf. Section 3.6) with PSF inference. In
(i), (iii), and (v), BTV regularization is used for restoration.
In (iv), the Wiener filter is used for restoration. The results
in (iv) and (v) show that using BTV regularization is slightly
more accurate than using the Wiener filter. This comparison
is only indicative however, as it only used additive white
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Figure 7. Examples of images artificially blurred with random
standard variation of Gaussian PSF in (0, 8] on FERET. (a) Tar-
get images from the subset ‘fa’. (b) Query images for the subset
‘fb’. Note that both target and query images are blurred to simulate
real-life face capture conditions.

Table 1. Identification performance on FERET of artificially cam-
era focus blur with random standard variation of Gaussian PSF.

Method Recognition rate

Baseline A + BTV 60.24%

Baseline B 72.43%

Hu & Haan [12] + BTV 76.02%

Our method + BTV 82.82%

Gaussian noise to artificial blurred images, and does not
compare impulse noise tolerance. From Figure 6 (b), our re-
sults (iv), (v) are significantly better than both baselines (i),
(ii) and (iii), especially in the presence of large blur. In our
unoptimized implementation on a single core 3.4GHz pro-
cessor, learning takes about 5 minutes, and PSF inference
takes about 0.5 seconds per image. The BTV regularization
[6] takes up to 1.5 seconds per image, and the Wiener fil-
ter [26] takes up to 50 milliseconds per image. Fast Fourier
transform is used for the Wiener filter.

We also show recognition performance on FERET when
the query set images were blurred by an unknown random
Gaussian sigma in the range (0, 8]. Figure 7 shows exam-
ples used in this experiment. Some faces are blurred only in
target images, and other faces are blurred only in query im-
ages. Note that facial deblur inference is performed on both
target and query images. From Table 1, we again see an
improvement on the other methods, and demonstrate con-
sistent performance for unknown blurs that do not precisely
coincide with the training PSFs.

4.1.2 Camera motion blur

The second experiment tests on synthesized images by blur-
ring sharp query faces from FERET using shift-invariant
linear motion blur PSFs as H(u, v) = 1/Z if ‖(u, v)‖2 < b
and v = u tan θ, otherwise H(u, v) = 0,where b is the
length of camera motion, θ is the angle, and Z is a nor-
malization term. White Gaussian noise of 30dB is added
to the synthesized images. Identification query images are

b = 5, θ = 0 b = 5, θ = 0.25π

b = 10, θ = 0

b = 15, θ = 0

b = 20, θ = 0

b = 5, θ = 0.5π b = 5, θ = 0.75π

b = 10, θ = 0.25π b = 10, θ = 0.5π b = 10, θ = 0.75π

b = 15, θ = 0.25π b = 15, θ = 0.5π b = 15, θ = 0.75π

b = 20, θ = 0.25π b = 20, θ = 0.5π b = 20, θ = 0.75π

Figure 8. Examples of synthesized images of camera motion blur
from the subset ‘fb’ of FERET. Blurred images are synthesized
from Figure 5 (a) using linear motion blur PSFs with given b, θ.

Table 2. Identification performance on FERET of artificially cam-
era motion blur.

Method Recognition rate

Baseline A + BTV 26.4%

Baseline B 59.6%

Yitzhaky & Kopeika [27] + BTV 60.0%

Our method + BTV 82.0%

blurred by the PSF in the range b = 5, 10, 15, 20 and
θ = 0, 0.25π, 0.5π, 0.75π. Examples are shown in Fig-
ure 8. For the representative fixed set Ω of PSFs, we use
N = 41 PSFs, including 10× 4 = 40 motion blur function
and 1 ‘no blur’ delta function. The parameters are set from
b = 2.5 to 25 in increments of 2.5 and from θ = 0 to 0.75π
in increments of 0.25π. The other parameters for learning
statistical models are the same as in Section 4.1.1.

Table 2 reports average recognition rate. We compare
our method to three alternatives. Baseline A and Baseline B
are the same as in Section 4.1.1. The PSF inference of Hu
& Haan [12] cannot be applied because it is only applicable
to focus blur. We instead use the method of Yitzhaky &
Kopeika [27]. As we see, our result is significantly better
than both baselines and [27].

4.2. Evaluation on a real blurred database

The second experiment uses real blurred images from
FRGC 1.0. We evaluated identification performance in
terms of verification rate under two setups, ‘Exp1’ and
‘Exp4’. Exp1 is evaluated on controlled still query images
while Exp4 is evaluated on uncontrolled still query images



(a) (b)

Figure 9. Example images from FRGC 1.0. (a) Target image. (b)
Query image in Exp4. Real camera focus blur arises in (b).

including blurred faces. Each query set consists of 608 im-
ages of 152 individuals. In Exp 4, we count that 366 query
images are degraded by camera focus blur. Target images
of Exp1 and Exp4 are collected under a controlled still con-
dition. A single image is captured per person for target.
The number of target images is 152. Figure 9 shows ex-
ample images from FRGC 1.0. Camera focus blur arises
in Figure 9 (b) as the camera focal length is adjusted to
the background. The amount of blur in both the target and
query images of Exp4 is not constant and unknown. Note
that facial deblur inference is performed on both target and
query images, since real face target databases already con-
tain considerable focus blur. For the representative fixed set
Ω of PSFs, we use N = 8 PSFs, including 7 Gaussians and
1 ‘no blur’ delta function. The parameters of the Gaussian
PSFs are set from σ = 1 to 4 in increments of 0.5. Three
subsets ‘bk’, ‘fa’, and ‘fb’ in FERET are used as training
set Ψ to learn the subspaces in a set of statistical models Φ.
The dimension of each subspace is D = 20. The number of
training images is M = 2591.

We show some deblurred images from Exp4 in Fig-
ure 10. The deblurred images look almost the same between
BTV regularization and the Wiener filter, probably because
the noise included in FRGC 1.0 can be approximated well
by white Gaussian noise instead of impulse noise.

In this experiment, the method from [16] is used to iden-
tify the deblurred face. This copes better with illumination
and pose changes than nearest-neighbor, but requires multi-
ple images for each individual. We therefore generate sev-
eral examples for a single training image per person by per-
turbing the facial feature points.

We evaluated recognition performance in terms of veri-
fication rate calculated from False Acceptance Rate (FAR)
and False Rejection Rate (FRR). As shown in Figure 11, our
method again obtains higher recognition performance than
previous methods and the same baselines. The recognition
performance using the BTV regularization and the Wiener
filter were almost the same in this experiment. We conclude
that our method is effective at deblurring real images to al-
low improved face recognition.

5. Conclusion
This paper proposed a novel method to deblur facial im-

ages for face recognition. Our algorithm inferred Point
Spread Functions using learned models of facial appear-
ance variation under different amounts of blur. The in-
ferred PSFs were used to sharpen both query and target im-
ages, and thereby improve face recognition accuracy. Our
experiments on both real and artificially blurred face im-
ages demonstrated substantially more accurate PSF infer-
ence and face recognition than two baseline methods and
previous works.

We believe that our deblurring method has relevance
not only for face recognition, but also for other restricted
classes of images, such as character, hand and body. As fu-
ture work we intend to expand our evaluation to include tol-
erance to noise and severe motion blur e.g. camera shake.
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with the Wiener filter and the BTV regularization, respectively.

 0

 20

 40

 60

 80

 100

V
e

ri
fi
c
a

ti
o

n
 R

a
te

(%
)

1
0

0
-F

R
R

@
F

A
R

=
0

.1

Exp1 Exp4

(ii)

(iii)

(iv)

Hu & Haan [12] + BTV

Our method + BTV

Baseline B

(i)

Baseline A + BTV

Figure 11. Identification performance on FRGC 1.0 (real blurred
images).

[15] S. Z. Li and A. K. Jain. Handbook of Face Recognition.
Springer, 2005.

[16] M. Nishiyama, M. Yuasa, T. Shibata, T. Wakasugi, T. Kawa-
hara, and O. Yamaguchi. Recognizing faces of moving peo-
ple by hierarchical image-set matching. Proc. IEEE Work-
shop on Biometrics, 2007.

[17] E. Oja. Subspace methods of pattern recognition. Research
Studies Press, 1983.

[18] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang,
K. Hoffman, J. Marques, J. Min, and W. Worek. Overview
of the face recognition grand challenge. CVPR, 1:947 – 954,
2005.

[19] P. J. Phillips, H. Moon, P. J. Rauss, and S. Rizvi. The feret
evaluation methodology for face recognition algorithms.
PAMI, 22(10):1090 – 1104, 2000.

[20] F. Rooms, A. Pizurica, and W. Philips. Estimating image
blur in the wavelet domain. ACCV, pages 210 – 215, 2002.

[21] A. E. Savakis and H. J. Trussell. Blur identification by
residual spectral matching. IEEE Trans. Image Processing,
2(2):141 – 151, 1993.

[22] M. Savvides, B. V. K. V. Kumar, and P. K. Khosla. Eigen-
phases vs. eigenfaces. ICPR, 3:810 – 813, 2004.

[23] I. Stainvas and N. Intrator. Blurred face recognition via a
hybrid network architecture. ICPR, 2:805 – 808, 2000.

[24] H. Tong, M. Li, H. Zhang, and C.Zhang. Blur detection
for digital images using wavelet transform. IEEE Proc. Int.
Conf. Multimedia and Expo, 1:17 – 20, 2004.

[25] S. Watanabe and N. Pakvasa. Subspace method of pattern
recognition. Proc. Int. Joint Conf. Pattern Recognition, pages
25 – 32, 1973.

[26] N. Wiener. Extrapolation, Interpolation, and Smoothing of
Stationary Time Series. The MIT Press, 1964.

[27] Y. Yitzhaky and N. S. Kopeika. Identification of blur param-
eters from motion blurred images. Graphical Models and
Image Processing, 59(5):310 – 320, 1997.

[28] L. Yuan, J. Sun, L. Quan, and H. Y. Shum. Image deblurring
with blurred/noisy image pairs. ACM Trans. Graphics, 2007.

A. Bilateral Total Variation regularization
The BTV regularization is robust to white noise and im-

pulse noise including outlier e.g. salt-and-pepper noise. In
BTV, deblurred image f̂ is defined as

f̂ = arg max
f̃

[ ‖Hsf̃ − g‖22 +

λb

P∑
l=−P

P∑
m=−P

α
|m|+|l|
b ‖f̃ − SlxSmy f̃‖1 ] ,

(5)

where λb, αb, P are constant, matrix Slx shifts an image hor-
izontally by l pixels, and matrix Smy shifts an image verti-
cally by m. Our experiments use L2 norm instead of L1
norm for ‖Hsf̃ − g‖ to reduce iterations. The deblurred
image f̂ is calculated using a gradient method as

f̂l+1 = f̂l − βb{ 2Hs
T(Hsf̂l − g) + λb

P∑
l=−P

P∑
m=−P

α
|m|+|l|
b (I − S−my S−lx )sign(f̂l − SlxSmy f̂l) } ,

(6)

where βb is constant, matrix S−lx , S−my are the transposes of
Slx, S

m
y respectively, and function sign( ) transforms posi-

tive values to 1 and negative values to -1 for each element
of the vector.


