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Abstract

We propose a new face recognition method that sepa-
rates subspaces representing individuals based on the math-
ematical analysis of angles between multiple subspaces. A
low-dimensional subspace representation by principal com-
ponent analysis is known to be an effective approach for de-
scribing variation of facial patterns. A similarity between
individuals is defined by an angle between their subspaces.
Since all facial patterns have the same structure of facial
parts, it is significant to extract individual characteristics
from each subspace by considering the cross-relationship
between categories. Our method applies “whitening trans-
formation of distribution of subspaces”, which can uni-
formize the distribution according to eigenvalues of the au-
tocorrelation matrix of the subspaces. We derive the equa-
tion relating angles between subspaces to uniformity of the
distribution of these subspaces. From this equation, the
whitening transformation is effective for separation of the
subspaces. Under the ideal condition, the whitening trans-
formation orthogonalizes all subspaces. In other words, all
similarities between each other are equal to 0. We show
the proposed method works well even in a practical case
through evaluation experiments on the FRGC 1.0 and the
FERET databases and outperforms other methods.

1 Introduction

Many face identification methods have been proposed,

which represent variation of patterns for an individual as a

low-dimensional subspace generated from a set of patterns

by principal component analysis (PCA) [2, 7, 11]. Since

these methods are able to cope with variation in appearance,

a robust face identification application can be built.

Yamaguchi et al. have proposed face recognition using

the Mutual Subspace Method (MSM)[11]. They represent

not only reference patterns as a reference subspace but also

input patterns as an input subspace. To compare an input

subspace with the reference subspace representing an indi-

vidual, a similarity of MSM is defined by an angle between

the input subspace and the reference subspace. MSM has a

problem in that reference subspaces crowd since all facial

patterns have the same structure of facial parts and MSM

does not have a function that separates the subspaces of in-

dividuals.

To improve the recognition accuracy by separating sub-

spaces, Fukui et al. have extended MSM to the Constrained
Mutual Subspace Method (CMSM)[2]. In CMSM, refer-

ence subspaces are projected onto a constraint subspace,

which is designed to emphasize the difference between in-

dividuals. Fukui et al. confirmed empirically that the pro-

jection to the constraint subspace creates a larger angle be-

tween multiple reference subspaces and explained that sub-

spaces are separated because the common components of

subspaces are removed.

We propose a new method, the Whitened Mutual Sub-
space Method (WMSM), based on a more mathemati-

cal analysis of angles between subspaces, which uses the

whitening transformation of the distribution of subspaces

for separation of subspaces. Whitening is a process to make

a distribution uniform. First, we derive the equation that

relates angles between multiple subspaces to a standard de-

viation of eigenvalues of an autocorrelation matrix of these

subspaces. This equation describes that uniformizing a dis-

tribution of multiple subspaces makes angles between these

subspaces larger. In other words, the whitening transfor-

mation emphasize the difference between individuals. In

particular, the whitening transformation of a distribution

of subspaces orthogonalizes reference subspaces when the

number of reference subspaces is small. We show the pro-

posed method works well even in a practical case through

evaluation experiments on the FRGC 1.0 and the FERET

databases and outperforms other methods.

The remainder of this paper is organized as follows.

First, to explain the reason for using the whitening trans-

formation of a distribution of subspaces mathematically,
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we analyze angles between multiple subspaces in section

2. Next, we describe the proposed method of face recogni-

tion in section 3. We demonstrate the effectiveness of our

method by face recognition experiments in section 4.

2 Mathematical analysis of angles between
subspaces

In this section, we explain the mathematical reason for

using the whitening transformation of a distribution of sub-

spaces for separation of these subspaces. For the purpose

of the explanation, two mathematical objects that are cal-

culated from multiple subspaces are prepared and the equa-

tion describing the relationship between these mathemati-

cal objects are derived. One of the mathematical objects is

a measure of separability of multiple subspaces, that con-

sists of canonical angles between these subspaces [1]. The

other is an autocorrelation matrix of multiple subspaces[2].

We derived the equation that consists of a measure of sep-

arability of multiple subspaces and a standard deviation

of eigenvalues of an autocorrelation matrix of these sub-

spaces. This equation describes that a measure of separabil-

ity of subspaces becomes large when a standard deviation

of eigenvalues of this matrix becomes small. In other word,

uniformizing distribution of subspaces separates these sub-

spaces. Based on this mathematical analysis of angles be-

tween subspaces, we propose the method using whitening

transformation for separation of multiple subspaces.

In MSM, a similarity between two subspaces is defined

by an angle between these subspace. In this paper, there-

fore, we represent that subspaces separate when angles be-

tween these subspaces are large.

2.1 A measure of separability of subspaces

In this section, we define a measure of separability of two

subspaces based on canonical angles between these sub-

spaces and extend it to multiple subspaces.

To prepare the definition of a measure of separability of

subspaces, we explain canonical angles between two sub-

spaces, which are described in [1]. d canonical angles

θ(1), . . . θ(d) between the d-dimensional subspaces V1 and

V2 in a vector space are defined as follows;

• V(1)
1 = V1 and V(1)

2 = V2.

• θ(i) is the angle between v
(i)
1 and v

(i)
2 , where v

(i)
1 ∈

V(i)
1 and v

(i)
2 ∈ V(i)

2 are the nearest vectors under the

condition |v(i)
1 | = |v(i)

2 | = 1.

• V(i+1)
1 = {v ∈ V(i)

1 |v ⊥ v
(i)
1 } and V(i+1)

2 = {v ∈
V(i)

2 |v ⊥ v
(i)
2 }.

where i = 1, . . . d and | · | denotes the norm. The subspaces

V(1)
j , . . . ,V(d)

j have the following relation;

V(1)
j ⊃ V(2)

j ⊃ . . . ⊃ V(d)
j (1)

where j = 1, 2. In particular, θ(1) is equal to the angle

between V1 and V2. Therefore, we use canonical angles

instead of a single angle because more detailed analysis of

separability is possible. When two subspaces are identical

and orthogonal, all canonical angles are equal to 0 and π/2,

respectively. From the definition of canonical angles, we

obtain the inequation θ(1) ≤ . . . ≤ θ(d).

The canonical angles between these subspaces become

large when two subspaces separate. Therefore, we define

a measure of separability of two subspaces V1 and V2 as

follows:

Sep(V1,V2) = 1 − 1
d

d∑
i=1

cos2 θ(i), (2)

where θ(1), . . . θ(d) are canonical angles between V1 and

V2. If two subspaces are identical and orthogonal, mea-

sures of separability of these subspaces are equal to 0 and 1,

respectively. When this measure of two subspaces is large,

these two subspaces separate.

For calculation of the measure of two subspaces (2) us-

ing orthonormal bases of these subspaces, we derive the

equation between a measure of separability of two sub-

spaces and projection matrices of these subspaces. The pro-

jection matrix P of subspace V is defined by equation (3)

[8].

P =
d∑

i=1

ψiψ
T
i , (3)

where {ψ1, . . . ψd} is an orthonormal basis of V. Generally,

a projection matrix is defined by d×D matrix (ψ1, . . . ψd)T

where D is dimension of the vector space. However, we use

the former definition since the latter definition does not have

the information of position of the subspace on the vector

subspace. Let Pj be the projection matrix of Vj , where

j = 1, 2. By calculation of the trace of P1P2, the equation

(4) is obtained.

Sep(V1,V2) = 1 − 1
d

tr(P1P2), (4)

where tr(·) is a trace of a matrix, which is a sum of diagonal

components of the matrix. (See Appendix for a detailed

calculation of (4)).

We extend a measure of two subspaces (2) to a measure

of separability of multiple subspaces. Let V1, . . . ,VN be

d-dimensional subspaces in a D-dimensional vector space.

A measure of separability of subspaces V1, . . . ,VN is de-

fined as an average of measures of Vk and Vl (1 ≤ k <
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l ≤ N)

Sep(V1, . . . ,VN ) =
2

N(N − 1)

∑
1≤k<l≤N

Sep(Vk,Vl).

(5)

When all subspaces are identical and orthogonal, measures

of separability of these subspaces are equal to 0 and 1, re-

spectively. The more this measure of multiple subspaces is,

the more these subspaces separate. We obtain the equation

(6) from (5) and (4).

Sep(V1, . . . ,VN ) = 1− 2
N(N − 1)

∑
1≤k<l≤N

1
d

tr(PkPl),

(6)

where Pk is the projection matrix of Vk defined by (3).

Therefore, we calculate a measure of separability of multi-

ple subspaces using orthonormal bases of these subspaces.

2.2 An autocorrelation matrix of sub-
spaces

To prepare calculation of a measure of multiple sub-

spaces (5) we explain an autocorrelation matrix of distri-

bution of subspaces, which is described in [2], and calcu-

late an average and a standard deviation of its eigenvalues.

An autocorrelation matrix of distribution of subspaces A
is defined as an average of all projection matrices, like an

autocorrelation matrix of distribution of vectors [8], and its

eigenvalue problem is solved as follows,

A =
1
N

N∑
k=1

Pk = BΛBT , (7)

where B is the matrix whose columns are the orthonormal

eigenvectors of A and Λ is the diagonal matrix of the cor-

responding eigenvalues λ1 ≥ . . . ≥ λD.

We calculate an average and a standard deviation of

eigenvalues of an autocorrelation matrix. Let mλ and

σλ be an average and a standard deviation of eigenvalues

λ1, . . . , λD, respectively. In the first step, we calculate an

average of eigenvalues of an autocorrelation matrix. An

average of eigenvalues of the autocorrelation matrix mλ is

equal to the constant value d/D regardless of arrangement

of subspaces V1, . . . ,VN from the following calculation,

mλ =
1
D

D∑
l=1

λl =
1
D

trA =
1
D

tr(
1
N

N∑
k=1

Pk),

=
1

DN

N∑
k=1

tr(Pk) =
1

DN

N∑
k=1

d =
d

D
. (8)

Next, we calculate a standard deviation of eigenvalues of an

autocorrelation matrix using (8) as follows,

σλ =
1
D

D∑
l=1

(λl − mλ)2,

=
1
D

D∑
l=1

λ2
l − m2

λ =
1
D

trA2 − (
d

D
)2. (9)

2.3 Equation between a measure of sepa-
rability and an autocorrelation matrix

In this section, we show that a separability of multi-

ple subspaces is decided from only a standard deviation of

eigenvalues of an autocorrelation matrix from the equation

that consists of a measure of separability of multiple sub-

spaces, a standard deviation of eigenvalues of an autocorre-

lation matrix and a constant term.

Using (6), (8) and (9), a measure of separability of mul-

tiple subspaces S = Sep (V1, . . .VN ) is calculated as fol-

lows,

S = 1 − 2
N(N − 1)

∑
1≤k<l≤N

1
d

tr(PkPl),

= 1 − 1
dN(N − 1)

∑
1≤k �=l≤N

tr(PkPl),

= 1 − 1
dN(N − 1)

tr(
N∑

k,l=1

PkPl −
N∑

k=1

Pk),

= 1 − 1
dN(N − 1)

tr(N2A2 − NA),

= − DN

d(N − 1)
σ2

λ +
N(D − d)
(N − 1)D

. (10)

From the equation (10), a transformation that decreases

the standard deviation of eigenvalues σλ separates the sub-

spaces V1, . . .VN . In particular, all subspaces are sepa-

rated most when all eigenvalues λ1, . . . λD are the same

values.

2.4 Whitening transformation of distribu-
tion of subspaces

We propose whitening transformation of distribution of

subspaces for separation of multiple subspaces based on the

analysis in the previous section. From the analysis in sec-

tion 2.3, a transformation that decreases standard deviation

of eigenvalues of autocorrelation matrix of subspaces sep-

arates these subspaces. In other words, whitening transfor-

mation of distribution of subspaces is effective to separate

these subspaces (Fig. 1). “Whitening” is a process to make

all eigenvalues of an autocorrelation matrix the same. The
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Figure 1. The ellipse and the circle in the cen-
ter of the figure represent the distribution of
subspaces. “Whitening” makes the distribu-
tion uniform.

matrix W that represents whitening transformation of dis-

tribution of subspaces V1, . . . ,VN is defined and makes an

autocorrelation matrix the identity matrix I as follows:

W = Λ−1/2BT , (11)

WAWT = (Λ−1/2BT )BΛBT (BΛ−1/2) = I,(12)

where B and Λ are defined in (7).

Another method, named the Orthogonal Subspace
Method (OSM), in which whitening orthogonalizes sub-

spaces, has been proposed by Fukunaga et al.[3] and

Kittler[4]. In OSM, an autocorrelation matrix of each class

is transformed by the whitening of the autocorrelation ma-

trix generated from all samples in all classes before a sub-

space of each class is generated from the eigenvectors of

the autocorrelation matrix of this class, the eigenvalues of

which are large. In other words, a set of samples in each

class is represented as a low-dimensional subspace after the

distribution of all samples in all classes is made uniform.

In this method, the eigenvector of an autocorrelation matrix

of a class, the eigenvalue of which is 1, is orthogonal to all

samples in other classes since all eigenvalues of the auto-

correlation matrix generated from all samples in all classes

are equal to 1.

In our method and OSM, subspaces are orthogonalized

using whitening. The difference between our method and

OSM is the order of the linearization and the transforma-

tion. In other words, an input subspace and a reference sub-

space are generated from a set of patterns before whitening

in our method, but after whitening in OSM. Therefore, our

method does not use eigenvectors of the autocorrelation ma-

trix whose eigenvalues are small. Furthermore, when the

number of subspaces is small, these subspaces are always

orthogonalized in our method but not always orthogonal-

ized in OSM (section 2.5).

2.5 Transformation under the ideal condi-
tion

We show that subspaces can be orthogonalized by the

whitening transformation of distribution of these subspaces

Figure 2. Similarity matrix: angles between
ten reference subspaces in MSM, CMSM and
WMSM in the case that the condition (14) is
satisfied. The darker a pixel is, the larger the
angle between subspaces is.

in the ideal case that the number of these subspaces is small.

In the first step, we prove the following proposi-

tion. Let u1, . . . , uN be bases of 1-dimensional sub-

spaces in D-dimensional vector space. A matrix U denotes

(u1, . . . , uN ) and Λ,Λ−1/2,B,W are defined as in (7) and

(11). Let u′
i be Wui for all i.

Proposition 1 if u1, . . . , uN is linearly independent,
u′

1, . . . , u
′
N is orthonormal.

Proof Let U′ be WU. Since UUT = A = BΛBT in the
equation (7) and u1, . . . , uN is linearly independent,

U′U′T = WUUT WT = Λ−1/2BT BΛBT BΛ−1/2 = ĨN ,
(13)

where ĨN is a diagonal matrix in which the number of 1
on the diagonal is N and others are 0. The symmetric ma-
trix U′T U′ is an identity matrix because all eigenvalues of
U′T U′ are the same as those of U′U′T without 0 and the
rank of U′T U′ is N . Therefore, u′

1, . . . , u
′
N is orthonormal

because a component of U′T U′ is an inner product of u′
k

and u′
l. �

Generally, we can orthogonalize all subspaces using the

whitening transformation of the distribution of these sub-

spaces if the following inequation is satisfied;

dN ≤ D, (14)

where D is the dimension of the vector space including

these subspaces, because we apply Proposition 1 to bases

of these subspaces. The equation (14) requires the dimen-

sion or the number of these subspaces to be small. In the

case that the condition (14) is satisfied, the measure of sep-

arability of subspaces transformed by the whitening trans-

formation is equal to 1 since the autocorrelation matrix of

these subspaces is ĨdN from the same calculation (13).

Fig. 2 shows similarity matrix images whose pixel val-

ues represent an angle between pairs of subspaces in MSM,
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Figure 3. The flow chart of WMSM.

CMSM, and our method in the case that the condition (14)

is satisfied. This figure shows that our method orthogonal-

izes all these subspaces.

3 Face Recognition using the whitening
transformation of the distribution of sub-
spaces

In this section, we describe the procedure of WMSM

(Fig. 3).

3.1 Algorithm for face recognition

First, we located the face pattern from the positions of

the feature points and cropped to 32 × 32 pixels using 3D

normalization[5] and preprocessing[6]. In order to adapt

localization error of feature points, we represent variation

of face patterns due to the localization error as a subspace in

the feature space by perturbation of the feature points and

obtaining multiple face patterns from a single face image.

We apply PCA to the vectors to generate an input subspace.

Let {xi}i=1,...n be a set of vectors. The basis of the input

subspace is the eigenvectors of the autocorrelation matrix

Z = 1/n
∑n

i=1 xix
T
i [8].

The whitening transformation (11) is generated from an

autocorrelation matrix of reference subspaces. To allow for

the variation in appearance for each individual, it is effective

to increase the dimension of the reference subspace by ad-

dition of other bases that are generated from reference pat-

terns and not used for comparison with an input subspace.

To compare the input subspace with the reference sub-

space registered in a database for each individual, we calcu-

late their similarities after transforming the input subspace

and the reference subspaces by the whitening transforma-

tion of a distribution of reference subspaces. The person in

the image is identified as the person who corresponds to the

reference subspace with the highest similarity.

3.2 Transformation of a subspace and cal-
culation of a similarity

In our proposed method, to transform the input subspace

Vinput and the reference subspace Vref by whitening of

distribution of reference subspaces, we carry out the fol-

lowing steps:

1. Transform a basis of a subspace by the whitening

transformation W.

2. Apply Gram-Schmidt orthogonalization to them.

The orthonormal basis is a basis of the transformed sub-

space.

We define a similarity s between the d-dimensional sub-

spaces Vinput and Vref as s = cos2 θ, where θ is the angle

between Vinput and Vref. The angle θ is equal to the 1-th

canonical angle θ(1) between Vinput and Vref. If Vinput
and Vref are identical, the angle θ is equal to 0. The angle

is calculated using the MSM[11]. The similarity s equals

the largest eigenvalue λmax of X = (xmn) using

xmn =
d∑

l=1

(ψm, φl)(φl, ψn) (m,n = 1 . . . d) , (15)

where {ψi}i=1,...,d and {φj}j=1,...,d are the orthonormal

bases of Vinput and Vref, respectively; (ψm, φl) is the in-

ner product of ψm and φl.

4 Evaluation with the FRGC 1.0 and FERET
databases

We show the proposed method works well even in a prac-

tical case. We performed experiments using the controlled

still images (exp1) in the FRGC 1.0 database [9] and the fa
and the fb data sets in the FERET database[10]. The con-

trolled still images in FRGC 1.0 consisted of 152 gallery

images and 608 probe images. The fa and the fb in FERET

consisted of images of 1196 people with one image per per-

son and 1195 people with one image per person, respec-

tively.

We compare five methods, namely, MSM, CMSM,

Multiple CMSM (MCMSM) [7], WMSM and Multiple
WMSM (MWMSM). MCMSM and MWMSM apply en-

semble learning with bagging to CMSM and WMSM, re-

spectively. In MCMSM, multiple constraint subspaces are

generated from reference subspaces selected randomly in

the same way of bagging. The input subspace and the ref-

erence subspaces are projected onto each constraint sub-

space and a similarity is determined with the similarities
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Table 1. The methods and their parameters. d
is the dimension of input and reference sub-
spaces. L is the number of constraint sub-
spaces and whitening transformations. d′ is
the dimension of reference subspaces that
generate constraint subspaces and whiten-
ing transformations. C is the dimension of
constraint subspaces.

d L d′ C
MSM 7 – – –

CMSM 7 1 15 210

MCMSM 7 10 15 210

WMSM 7 1 15 –

MWMSM 7 10 15 –

Table 2. Experimental results using FRGC 1.0
in terms of Correct Match Rate (CMR) and
Equal Error Rate (EER).

CMR (%) EER (%)

MSM 96.4 3.45

CMSM 96.5 2.47

MCMSM 97.2 2.28

WMSM 97.0 1.81

MWMSM 97.2 1.81

calculated on each constraint subspace. In MWMSM, mul-

tiple whitening transformations are generated from refer-

ence subspaces selected randomly and the similarity is de-

termined with an average of the similarities calculated after

transformation by each whitening transformation. Their pa-

rameters in the experiments are listed in Table 1.

Table 2 shows the evaluation results in FRGC 1.0 for

each method in terms of Correct Match Rate (CMR) and

Equal Error Rate (EER). Correct Match Rate is the proba-

bility that an input of the right person is correctly accepted.

Equal Error Rate is the probability that false acceptance rate

(FAR) equals the false rejection rate (FRR). It can be seen

that the proposed method and the proposed method with en-

semble learning are equivalent to MCMSM with regard to

Correct Match Rate and superior to the other methods with

regard to Equal Error Rate on FRGC 1.0.

To evaluate the generalization ability of our method, we

performed experiments using another database. Fig. 4

shows the evaluation results for each method and the best

result (UMD97) of the partially automatic algorithms re-

ported in FERET’97 [10] in terms of Cumulative Match

Rate. It can be seen that the proposed method and the pro-

posed method with ensemble learning are superior to the

other methods.
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Figure 4. Experimental results using FERET
database in terms of Cumulative Match Rate.

5 Conclusions

This paper presented a face recognition method based

on mathematical analysis of angles between subspaces in

which we apply whitening of a distribution of subspaces to

emphasize the difference between individuals. We derived

the equation (10) that relates angles between subspaces to

a distribution of these subspace. This equation describes

that the whitening transformation is effective for separation

of these subspaces. In the experiment, we obtained high

performance compared with other methods on the FRGC

1.0 and the FERET database .
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A Calculation of a measure of separability of
subspaces

To obtain equation (4), we prove the following equation,

1
d

tr(P1P2) = Sep(V1,V2). (16)

To calculate the trace of the product of projection matri-

ces, we describe several facts about vectors v
(1)
1 , . . . , v

(d)
1

and v
(1)
2 , . . . , v

(d)
2 in section 2.1. A set of vectors

{v(1)
j , . . . , v

(d)
j } is an orthonormal basis of Vj since v

(i)
j

is orthogonal to V(i+1)
j , where j = 1, 2. Furthermore, v

(k)
1

is orthogonal to v
(l)
2 (k �= l) since the equations (17) and

(18) are derived from the definition of v
(i)
1 and v

(i)
2 ,

P(i)
2 v

(i)
1 = cos θ(i)v

(i)
2 , (17)

P(i)
1 v

(i)
2 = cos θ(i)v

(i)
1 , (18)

where P(i)
j is projection matrix of V(i)

j (j = 1, 2). From

these facts, the following equations (19) and (20) is ac-

quired.

(v(k)
1 , v

(l)
1 ) = (v(k)

2 , v
(l)
2 ) =

{
1 (k = l),
0 (k �= l), (19)

(v(k)
1 , v

(l)
2 ) =

{
cos θ(k) (k = l),
0 (k �= l),

(20)

where (·, ·) is the inner product of vectors.

We calculate the trace of the product of projection ma-

trices in the equation (16). The projection matrix Pj of Vj

is defined by
∑d

i=1 v
(i)
j v

(i)T
j since {v(1)

j , . . . v
(d)
j } is an or-

thonormal basis, where j = 1, 2. By calculation of trace

of P1P2 using the equations (19) and (20) as follows, the

equation (16) is obtained.

1
d

tr(P1P2) =
1
d

tr((
d∑

k=1

v
(k)
1 v

(k)T
1 )(

d∑
l=1

v
(l)
2 v

(l)T
2 )),

=
1
d

tr(
d∑

k,l=1

v
(l)T
2 v

(k)
1 v

(k)T
1 v

(l)
2 ),

=
1
d

d∑
k=1

cos2 θ(k) = Sep(V1,V2).
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