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Abstract

We propose a new method for synthesizing an illumina-
tion normalized image from a face image including diffuse
reflection, specular reflection, attached shadow and cast
shadow. The method is derived from the Self-Quotient Im-
age (SQI) [14] which is defined by the ratio of albedo at the
pixel value to a locally smoothed pixel value. However, the
SQI is not synthesized from an image containing shadows
or specular reflections. Since these regions correspond to
areas of high or low albedo, they cannot be discriminated
from diffuse reflection by using only a single image. To clas-
sify the appearances, we utilize a simple model defined by
a number of basis images which represent diffuse reflection
on a generic face. Through experimental results we show
the effectiveness of this method for face identification on the
Yale Face Database B and on a real-world database, using
only a single image for each individual in training.

1. Introduction

In face recognition, identification performance is signif-
icantly influenced by a variation in appearance caused by
illumination. The appearance is mainly classified into four
components [11]: diffuse reflection, specular reflection, at-
tached shadow and cast shadow. To increase the accuracy
of face recognition in the case of variation of these compo-
nents, it is important to be able to synthesize an illumination
normalized image for training from any given face image. A
method for synthesizing such images without an explicit ap-
pearance model for illumination has been proposed in [1, 9],
where the variation caused by illumination is regarded as
an intraclass variation. An illumination normalized image
is synthesized by projection onto a feature space which is
insensitive to the intraclass variation, whilst remaining sen-
sitive to the interclass variation which represents changes
in individual appearance. However, in the case of different
lighting conditions amongst images for learning the feature
space, an illumination normalized image cannot be synthe-
sized since the feature space cannot estimate a novel appear-

ance caused by illumination.
In order to synthesize an illumination normalized image

with an appearance model for illumination, a method using
basis images has been proposed in [12, 10], which is suit-
able for modeling the variation in face appearance caused
by diffuse reflection. This model is advantageous in that a
registration system stores only a few images and fitting to
the model is simple. Shashua et al. have proposed the Quo-
tient Image (QI) [12], which is the ratio of albedo between a
face image and linear combination of basis images for each
pixel. The ratio of albedo is illumination invariant. How-
ever, the QI assumes that all observed image intensities are
generated by diffuse reflection. Okabe et al. synthesized an
image consisting of diffuse reflection and attached shadow,
removing specular reflection and cast shadow from a face
image [10]. In this method, diffuse reflection and attached
shadow are estimated by basis images using random sam-
ple consensus. Basis images were generated from three face
images acquired under fixed pose and a moving point light
source [11], or from four face images acquired under mov-
ing pose and a fixed point light source [8]. Therefore, these
methods [12, 10] require multiple face images for each indi-
vidual in the registration stage of training. This requirement
is an important limitation for practical applications.

In order to synthesize an illumination normalized image
from a single face image for each individual, Wang et al.
have proposed the Self-Quotient Image (SQI) [14]. Each
pixel of the SQI contains the ratio of the albedo at that pixel
and a smoothed value of the albedo in a local region. How-
ever, in the case that a face image contains specular reflec-
tion and shadow, the SQI is not illumination invariant. For
this reason, diffuse reflection cannot be extracted from the
pixel affected by specular reflection and a shadow region
cannot be discriminated from a dark albedo region.

In this paper, through introducing a model of basis im-
ages to the SQI for the classification of appearances caused
by illumination, we propose a new method for synthesiz-
ing an illumination normalized image from a face image
which includes diffuse reflection, specular reflection, at-
tached shadow and cast shadow. Each individual in a train-
ing set shares the same basis images which represent diffuse



reflection on a generic face. The basis images are generated
using face images acquired from other individuals in the
training stage. We call the synthesized image the Classi-
fied Appearance-based Quotient Image (CAQI). To synthe-
size the CAQI, we design a filter, which extracts the ratio
of albedo in a local region, based on the appearance of each
pixel. The appearance is classified into four components
using the basis images.

The remainder of this paper is organized as follows.
First, we describe the conventional method, SQI, and clar-
ify the weaknesses in section 2. Next, we describe a new
method, CAQI, in section 3. Then, we demonstrate the ef-
fectiveness of CAQI through experiments in section 4.

2. Obtaining invariance with respect to diffuse
reflection

2.1. Self-Quotient Image (SQI)

The SQI [14] has been proposed for synthesizing an illu-
mination normalized image from a single face image. The
SQI is defined by a face image I(x, y) and a smoothed im-
age S(x, y) as

Q(x, y) =
I(x, y)

S(x, y)
=

I(x, y)

F (x, y) ∗ I(x, y)
, (1)

where F (x, y) is a smoothing filter; ∗ is the convolution op-
eration. In the case that a smoothing filter is an isotropic
Gaussian filter G(x, y), equation (1) is equivalent to the
center/surround retinex transform described in [5]. The SQI
is generated using an anisotropic, weighted Gaussian filter
W (x, y)G(x, y).

As described in [14], Q(x, y) is illumination invariant if
certain assumptions are met. The diffuse reflection is de-
fined by the Lambertian model as

i = max(alnT s, 0) , (2)

where i is pixel value of I(x, y); a and n are the albedo
and the normal of the object surface; l and s are the strength
and direction of the light source. The lengths of n and s
are normalized. The attached shadow appears in the case
where the dot-product between n and s is negative. We
make two assumptions in a local region : that (a) l, n,
and s are uniform and (b) all observed appearance is diffuse
reflection. Then the ratio of albedo is extracted as

Q(x, y) =
a(x, y)lnT s

F (x, y) ∗ a(x, y)lnT s
=

a(x, y)

F (x, y) ∗ a(x, y)
.

(3)
Under multiple light sources, the ratio of albedo is also ob-
tained using additivity s =

∑n
k=1 sk.
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Figure 1. Examples of different appearances
in local regions. Other than diffuse reflection
is also observed in local regions (ii) and (iii).
Then, illumination invariant feature is not ex-
tracted from these local regions.

2.2. Problems caused by effects other than
diffuse reflection

Equation (3) works well for a local region such as Fig-
ure 1(i) which includes low albedo region of eyebrow and
middle albedo region of forehead. The assumptions of sec-
tion 2.1 are valid in this local region where only diffuse
reflection is observed. However, the assumptions are vio-
lated in (ii) and (iii) where cast shadow, or specular reflec-
tion, is partially observed. In specular reflection region, dif-
fuse reflection cannot be extracted because the pixel value
is saturated. Then, we need to estimate diffuse reflection
value from the pixel giving rise to specular reflection. In
cast shadow region, light parameters, l and s, are different
from diffuse reflection because cast shadow appears the di-
rect path between a light source and a point obstructed by
an intervening object. The same is true of attached shadow
region. In these shadow region, diffuse reflection is also
observed because the region is illuminated by another light
source e.g. ambient light. Then, we need to determine a
local region where similar appearance is observed.

2.3. Weight function for synthesizing the
SQI

The weight function W (x, y) of the SQI is designed for
each pixel to prevent halo effects around edge. The weight



function divides a local region into two subregions M1 and
M2 . If I(x, y) ∈M2 then W (x, y) = 0 else W (x, y) = 1.
The subregion is determined by a threshold τ which is the
average of pixel values in the local region. The subregion
with the larger number of pixels is set to M1, the other is
set to M2. However, the weight function is unable to dis-
criminate between the shadow and low albedo region, e.g.
eyes and eyebrows. Illumination invariant feature can be
extracted from a local region which contains edge between
middle albedo region and low albedo region such as Figure
1(i). Therefore, the SQI is disadvantageous in that an im-
portant feature representing identity is neglected. Another
problem is that a region is not simply divided where pixel
values change smoothly, e.g. the soft shadow observed in
the contour of the cast shadow.

3. Classified Appearance-based Quotient Im-
age (CAQI)

In this section we introduce a new method for extracting
the ratio of albedo from a face image including specular re-
flection and shadow. In this method the weight function for
the weighted Gaussian filter is calculated using classifica-
tion of appearance for each pixel.

3.1. Classification of appearance caused
by illumination using photometric lin-
earization

To classify surface appearance into diffuse reflection,
specular reflection, attached shadow and cast shadow, we
utilize photometric linearization [7]. Photometric lineariza-
tion transforms a face image into a linearized image consist-
ing of only diffuse reflection. A linearized image Ĩ(x, y) is
defined by the model [11] in which arbitrary images caused
by diffuse reflection are represented by a linear combination
of three basis images Ii(x, y)(i = 1, 2, 3) taken under point
light sources in linearly independent directions as

Ĩ(x, y) =

3∑
i=1

ciIi(x, y) . (4)

To estimate a coefficient ci from a face image including
specular reflection and shadow, photometric linearization
uses random sampling of pixels. By random sampling we
calculate candidates of ci. The final ci are determined from
the distribution of candidates by iterating between outlier
elimination and recomputation of the mean.

The appearance is classified using a difference image
I ′(x, y), defined as

I ′(x, y) = I(x, y)− Ĩ(x, y) . (5)

As in [7] a pixel having a negative value in I ′(x, y) is clas-
sified as cast shadow. A pixel having a value greater than
the threshold in I ′(x, y) is classified as specular reflection.
A pixel having a negative value in Ĩ(x, y) is classified as
attached shadow. To estimate diffuse reflection for the pixel
giving rise to specular reflection, we replace the pixel value
from I(x, y) to Ĩ(x, y).

3.2. Generation of basis images

Since we do not acquire basis images Ii(x, y) for each
individual in the training stage, we generate basis images
using different individuals from the training stage. For this
purpose, we acquire images for multiple persons under fixed
pose and a moving point light source not including specular
reflection and shadow. The point light source is moved so
as to be linearly independent. We apply Singular Value De-
composition (SVD) using all the acquired images. The vec-
tors, selected in descending order of singular value, are the
basis images. We assume that the basis images represent the
diffuse reflection on a generic face. However, retaining the
first three basis images, the estimated ci in equation (4) has
an error induced by the difference between a generic face
and an individual face. For fitting basis images to various
individuals, we select more than four vectors in descend-
ing order of the singular value. These vectors represent the
principal component of the variation in appearance due to
the diffuse reflection for individuals.

3.3. Calculation of the weighted function
using classified appearance

To calculate the weight function based on appearance
caused by illumination for the weighted Gaussian filter, we
utilize a difference image I ′(x, y) representing the differ-
ence of the appearance. We aim to extract the ratio of albedo
from a local region in which similar appearance is observed.
For example, if the center of a local region is classified as
diffuse reflection, we give a large weight to diffuse reflec-
tion of the surrounding area of the center and small weight
to shadow of that. The weight function W (x, y) is defined
by comparing the center of a Gaussian filter with its sur-
rounding area as follows:

W (x, y) =
1

1 + α|I ′(x, y)− I ′(x0, y0)|
, (6)

where (x0, y0) is the center pixel of the Gaussian filter; α
is constant (α > 0). If I ′(x, y) is greater than I ′(x0, y0),
then I ′(x, y) has a different appearance to I ′(x0, y0), and a
small weight is given to I ′(x, y).
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Figure 2. Flow of synthesizing the CAQI.

3.4. Algorithm for synthesizing the CAQI

We now explain the algorithm for synthesizing the Clas-
sified Appearance-based Quotient Image (CAQI). The flow
diagram of the algorithm is shown in Figure 2. First, a face
image is aligned from the positions of the pupils and the
nostrils. Next, appearance is classified using the photomet-
ric linearization. Then, the specular reflection is replaced
with the estimated diffuse reflection.

For calculating the ratio of the albedo, we need to deter-
mine the size of a local region in order to obtain a uniform
surface normal n. However, searching for a suitable size is
difficult since there is an ambiguity in the computation of
n for basis images which are generated by unknown l and
s [3]. Therefore we use multiple sizes as in [14, 6]. The
size is defined by the standard deviation σ of the Gaussian
filter. We calculate the weight function Wj(x, y) for each
σj(j = 1, . . . , N). Finally, the illumination normalized im-
age Q(x, y) is synthesized as

Q(x, y) =

N∑
j=1

f

(
I(x, y)

Wj(x, y)Gj(x, y) ∗ I(x, y)

)
. (7)

Note that we assume
∫ ∫

Wj(x, y)Gj(x, y)dxdy = 1. As
in [14, 6] we use f in equation (7). The function f pre-
vents asymptotic approach to infinity from division when
the term Wj(x, y)Gj(x, y) ∗ I(x, y) tends to zero in shad-
owed regions.

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5

Figure 3. Examples of the Yale face database
B.

I1 I2 I3 I4 I5 I6 I7

Figure 4. Basis images generated from the
CMU-PIE 68 individuals under 8 lighting con-
ditions.

4. Empirical Evaluation

4.1. Performance for varying illumination

Experimented conditions. To illustrate the performance
of our proposed method, we have conducted face identifica-
tion experiments using the Yale Face Database B [2]. The
database consists of images taken under 64 different light-
ing conditions, which are divided into 5 subsets. In Figure
3, we show examples of face images in each subset. We
used 640 images in total taken of 10 individuals in a frontal
pose. We located a 64×64 pixels face image from the posi-
tions of the pupils and the nostrils obtained manually. In our
experiments we use a single face image of each individual
for training, where the lighting condition is the same for all
subjects. This condition is different from [14] which used
multiple images for training. The images taken under the
remaining 63 lighting conditions are used for testing.

For the generation of basis images, we used the CMU
PIE [13] consisting of different individuals from the Yale
Face Database B. We selected images taken from a frontal
pose (c27) under light sources (f06, f07, f08, f09, f11, f12,
f20, f21). We applied SVD to all images of 68 individuals
and selected the 7 basis images shown in Figure 4.
Identification performance. We compared the perfor-
mance of the CAQI with the gray-scale image (GS), the
histogram equalized image (HE), the Multi-scale Cen-
ter/Surround Retinex image (MSR) [6] and the SQI [14].
For GS, we used the face image directly. For HE, we used
the histogram equalization of face image. For MSR, SQI
and CAQI, we used multiple Gaussian filters, σi were set to
1.0, 2.0, 3.0, and f in equation (7) was chosen as the loga-
rithmic function. For CAQI, we sampled 20,000 candidates



Table 1. CMR (%) on the Yale Face Database
B. Images taken under one lighting condition
were used for training set. Images taken un-
der 63 different lighting conditions were used
for test set.

Subset Method
(Training) GS HE MSR SQI CAQI

1 68 71 93 87 96
2 64 68 91 82 95
3 54 58 82 71 88
4 39 43 79 68 84
5 25 42 79 75 91

Gray-scale Retinex CAQISQI

Figure 5. Examples of an image synthesized
by each method. (The upper row is subset 3
and the lower row is subset 4)

to estimate ci and α was set to 0.1. The synthesized image
was transformed to a vector by raster-scanning of the im-
age and the length of the vector was normalized. Then, we
calculated the similarity between the training vector and the
testing vector using normalized correlation.

Table 1 shows the evaluation result for each method in
terms of the correct match rate (CMR). CMR is the prob-
ability that a face image of the right person is accepted
correctly when using nearest neighbor classification. We
show the average of the CMR for each subset in the ta-
ble. The performance of the MSR is superior to that of the
SQI. Heusch et al. reported a similar result for a different
database [4]. For this reason, we infer that the weight func-
tion for the SQI causes the problem that the center pixel of
Gaussian filter is not included in the subregion M1. Since
the appearance differs between the center pixel and the sub-
region, the assumptions for equation (3) are invalid. From
the table we can see that the performance of CAQI is su-
perior to that of the others. In particular, the performance
in subset 5 where faces are mostly shadowed is improved
significantly.

Table 2. Comparison of identification perfor-
mance using basis images of each individual
versus basis images of others. Images taken
under one lighting condition in subset 1 were
used for training set.

Method Subset (Input)
1 2 3 4 5

SQI 100 97 91 76 70
CAQI-other 100 97 97 93 93
CAQI-same 100 99 99 95 94

Comparison of synthesized images. Figure 5 shows the
synthesized center/surround retinex image, SQI and CAQI.
To synthesize these images we used a single σ = 1.0. In
the case of the synthesized images in subset 4, features hid-
den by shadow around the eyes in the gray-scale image ap-
pear in the center/surround retinex image, SQI, and CAQI.
It can clearly be observed that the influence of cast shad-
ows is reduced in the CAQI. This is particularly evident at
the contour of the shadowed region and in the region of the
specular reflection on the nose.
Identification performance in the case of basis images
for each individual. We compared the identification perfor-
mance using basis images of each individual (CAQI-same)
and using basis images of others (CAQI-other). In CAQI-
other, we used basis images of CMU-PIE shown in Figure
4. In CAQI-same, basis images for each individual in a
training set were generated using 7 face images in subset
1. We selected three basis images in descending order of
singular value. Images taken under one lighting condition
in subset 1 were used for training set. Images taken un-
der 63 different lighting conditions were used for the test
set. Table 2 shows the evaluation result in terms of CMR.
CAQI-other and CAQI-same are superior to the SQI. How-
ever, the CAQI-same is superior to CAQI-other. For this
reason, we presume that the albedo and the surface normal
of faces in the test set are different from those for individu-
als included in CMU-PIE. To increase performance further,
we are considering developing a method of deforming basis
images from generic basis images without requiring more
than one training image per person.

4.2. Performance assessment on a real-
world database

We also evaluated the methods using a database col-
lected under two lighting conditions for 100 individuals.
We assumed a practical application of face recognition to
passport-based identification. The lighting conditions are
(I) no shadow on the face by using a flash attached to cam-
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Figure 6. Examples of a real-world database.

Table 3. CMR (%) on a real-world database
(100 individuals).

Training Method
image GS HE MSR SQI CAQI

(I) 30 16 78 65 82
(II) 33 25 73 29 80

era, and (II) face shadowed by a single spotlight mounted
on the ceiling as shown in Figure 6. We collected a single
face image for each individual and each lighting condition
in the case that ceiling fluorescent lamps are on. The pa-
rameters of section 4.1 remained unchanged. We show the
CMR (%) in Table 3 for the condition that (I) is the training
set and (II) is the testing set, and vice versa.

We can see that the method using the CAQI is superior
to the other methods. In particular, the CAQI is effective
when images containing cast shadow regions, as in (II), are
used as training example. However, an error in the photo-
metric linearization arose since a single set of ci does not
fully represent the diversity of illumination under multiple
light sources. To improve the performance, we consider de-
veloping a method of estimating multiple sets of ci under
multiple light sources.

5. Conclusion

This paper proposed a method of synthesizing an illumi-
nation normalized image, in the case that diffuse reflection,
specular reflection, attached shadow and cast shadow are
observed, by classifying appearances into four components
using basis images which represent the diffuse reflection on
a generic face. Our method is able to obtain high identi-
fication performance on the Yale Face Database B and on
a real-world database, using only a single image for each
individual in training.

In future work, we intend to develop a method of estimat-
ing basis images for each individual in training from basis

images of others, and a method of estimating the sets of
coefficients for the combination of basis images under mul-
tiple light sources, and a method of determining the size of
a local region by adjusting facial normal.
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